LEAN Job Order Contracting – Optimize Facility Renovation, Repair, & Maintenance

LEAN Job Order Contracting – Optimize Facility Renovation, Repair, & Maintenance

Optimizing facility and infrastructure renovation, repair, and maintenance requires alignment of organizational strategy and vision both internally and with service providers.

2015 optimized facility renovation and repair

Internally, owners must be skilled at all aspects of managing the life-cycle of physical structures from concept through warranty, with particular emphasis upon LEAN, collaborative best management practices.

Improving operational efficiency and maximizing capital reinvestment can only be achieved if owners demonstrate leadership with respect to developing internal teams and trusted business partners such as architects, engineers, and contractors.

Job Order Contracting is a critical tool with respect to delivering more projects on-time and on-budget versus traditional design-bid-build.  High levels of quality and overall satisfaction can also be achieve via owner implemented and managed job order contracts.

Job Order Contracting is a LEAN construction delivery method that integrates mandatory collaboration of all stakeholders, shared risk/reward, common terms, definitions, and data architectures, transparent pricing via a unit price book – UPB,  global oversight and local implementation, on-demand services, and best value procurement.

Owners and contractors continuously evaluate current overall status, prioritized projects, performance versus budget, quality, and time,  and methods for improvement.

Unlike typical AEC culture, all parties are contribute equally and sacrifice short-term gains for better long-term performance.  Vision and intent of the partnership is shared and goals are clearly defined.  While there is a high degree of trust, all financial, project, and technical information is fully transparent and documented.  Parties are free to deliver in their area of expertise without excessive management and control.  While education and training is both ongoing and mandatory.     All of these factors are principles of LEAN construction management and best practice JOB ORDER CONTRACTING.  They all all involved parties to develop with and for each other with the result being better ways of doing things and mutual, longer term rewards.

 

standardized cost data

job order contracting

 

job order contract

Next Generation Cloud Construction Cost Estimating and Efficient Project Delivery Solution in Beta

4Clicks Solutions, LLC is currently beta testing Ceasel, a next generation cloud computing application to enable collaborative construction cost estimating and associated efficient project delivery.

Cloud computing is more than a catalyst for change, it is a DISRUPTIVE TECHNOLOGY, that will significantly enhance productivity within the Architecture, Engineering, Construction, and Facility Management sectors.

ceasel-logo

Different form legacy client/server applications or “web-enabled” systems that tend to automate existing ‘ad hoc’ and inefficient business process, Ceasel and other “built from the ground” true cloud computing applications enables embed business best practices and drive true collaboration among Owners, Contractors, Architects, Engineers.  The core focus ends up being upon  CHANGE MANAGEMENT and how to best leverage cloud computing, vs. the technology itself.

Here’s just a few benefit of Ceasel’s cloud computing …

1. Collaboration – True cloud computing (vs. cloud-washing or simply posting legacy applications to the cloud) lets users work concurrently on projects in real-time…virtually anyone, anywhere, anytime in multiple languages and currencies.

2. Data Integrity – Information is NEVER deleted. This is potentially the best form of security available. “Who” does “What” and “When” is always tracked and changes can be “rolled back” at any time by authorized administrators.

3. Data Protection – It is YOU, the user who determines how, when, and where to publish data. For example, you can maintain information in your private area, publish as read only to specified members within a private cloud…or publish to all members in a private cloud, or publish information to all members in public cloud and enable rights to use and modify data.

4. Visualization – DATA visualization and the associated development and implementation of collaborative construction delivery methods such as integrated project delivery – IPD, and job order contracting, JOC, enable shared information earlier in the project life-cycle and among more participants.  This enable errors to be found and corrected and/or changes to be accomplished earlier in the project timeline.  This results in few change orders, faster project timelines, and virtual elimination of legal disputes.  Cloud computing will accelerate data visualization and transparency among all stakeholders of physical infrastructure and promote multiple forms of performance-based processes.

5. Agility – Our work and natural environments are changing at an accelerated pace. Rapid deployment, monitoring, and the associated continuous modification of processes and policies are becoming increasingly important. Cloud computing deploys processes faster than any other method currently available. There is no longer a need to rely upon internal “IT” for deployment or applications specific changes, computing power, storage space, etc.

6. Mobility – It is neither cost effective, nor efficient, to have everyone working in offices or specified work settings. Resources need to be tapped from multiple locations enabling use of “the best of the best”. Cloud computing allows direct, transparent access to local resources while also communicating centralized processes and procedures.

7. Centralization of Information – While information can be scattered among several data centers, it also can be instantly consolidated to provide global management in support of an organization’s mission as well as associated, efficient local action.

8. Business Continuity – While Internet access is required (unless you host the “cloud” internally), would you rather store your information at your location and risk catastrophic failure, or at a location with multiple redundancies?

 

If you are interested in becoming a beta partner, please contact pcholakis@4Clicks.com

Construction Productivity must be Owner driven – BIM, IPD, JOC

One thing is clear, the construction sector (architecture, engineering, contractors, owners, operators, users, suppliers) has been lagging virtually all other business sectors for decades with respect to productivity improvement.

I believe that the cause is largely cultural, however, any major improvement must be driven by Owners,and/or mandated by governmental regulation.

My reasoning is simple, Owners pay the bills.  Thus as long as Owners remain satisfied with the status quo and/or remain “uneducated” with respect to proven business “best practices” and lean management processes, as well as supporting technologies, economic and environmental waste will continue to be rampant.

Currently, my outlook is somewhat pessimistic.  If one looks at  capability and knowledge specific to life-cycle  facility management from an industry perspective, most has originated with the government sector, followed by higher education, state government, healthcare, process-based industries, etc. etc.    Basically, Owners whose mission is dependent upon their built environment tend to create and follow life-cycle management practices. These are Owners that can’t adopt a “churn and burn”, or “run to failure” approach to facility management.  These sectors can’t easily pack up and move if their facilities and physical infrastructure fail.

That said, even government owners, for the most part, have failed in any sort of department or agency-wide adoption of standardized best practices.  This is true even for  “simple” areas such as facility repair, maintenance, and renovation.  Only the Air Force appears to come close to having any true adoption of robust, proven, best-practices in this regard, as well as associated training, etc., most notably with their SABER construction delivery structure.

In order to effect measurable productivity improvement in the “construction” sector, , I have put together a core requirements “checklist”.

1. Robust Ontology – Cost effective information management and information reuse can only be accomplished with a detailed set of terms, definitions, metrics, etc.  This aspect is also critical to improved strategic and tactical decision support mechanisms.

2. An understanding of life-cycle management of the built environment from a collaborative, best-practices, process perspective as well as associated supporting technologies.  Forget the traditional strategy-design-construction-demolish approach.

3. Commitment to a total cost of ownership perspective including both economic and environmental costs vs. our classic “first-cost” mentality.

4. “Trust but measure” – Owners MUST conduct their own internal cost estimating and associated capital planning and compare these to contractor estimates, with each party using the same  data architecture (examples: RSMeans, masterformat, uniformat, omniclass).

5. Adoption of collaborative construction delivery methods such as Integrated Project Delivery, IPD, and Job Order Contracting, JOC, in lieu of antagonistic and inefficient design-bid-built, or even design-build.

6. STOP reinventing the wheel.  Nothing noted here is “rocket science”.  Many, if not most, processes, procedures, and technologies are readily available for anyone who does a bit of basic research!!!   Also, stop with the focus upon BIM from a 3D visualization perspective!  3D tools are great, and add value, however, INFORMATION and PROCESS drive success.

 

BLM2

What is BIM?

If you can’t see the whole picture… you can’t appreciate BIM.

elephant BIM

Hard to believe…perhaps to some… but many /most of us in the Architecture, Construction, Owners, Operations sector still don’t know how to define BIM.

Anna Winstanley and Nigel Fraser of Lean BIM Strategies Limited provided the most likely reason in a recent perspective…  if you can’t see the whole picture… you can’t appreciate BIM.

BIM Definition – Short – The life-cycle management of the built environment supported by digital technology.

BIM ToolsBIMF - Building Information Management Frameworkvia http://www.4Clicks.com –  Premier cost estimating and efficient project delivery software supporting JOC, SABER, IDIQ, SATOC, MATOC, MACC, POCA, BOA … and featuring integrated contract, project, document management, visual estimating/quanity take-off. QTO, and an exclusively enhanced 400,000 line itme RSMeans Cost database.

Moving from Design-Build, DB, to Integrated Project Delivery, IPD

Providing the opportunity for the kind of collaboration that the construction industry so badly needs….

Design-Build has a spectrum, ranging from almost as dysfunctional …. all the way to almost as collaborative as Integrated Project Delivery.

Shifting Design-Build toward IPD

This blog entry was co-authored by Oscia Wilson and Lisa Dal Gallo

We are big proponents of Design-Build because it places designers and builders in the same room, thus providing the opportunity for the kind of collaboration that the construction industry so badly needs.  Opportunity for collaboration, however, is not the same as a guarantee of collaboration.  Design-Build has a spectrum, ranging from almost as dysfunctional as Design-Bid-Build all the way to almost as collaborative as Integrated Project Delivery.

Design Build continuum

Figure 1: Depending on how the Design-Build structure is implemented, a project can be nearly identical to an IPD structure or very dysfunctional

On the left of this spectrum, you have those Design-Build projects that use bridging documents, lowest bidder selection, and a team that doesn’t work well together.  Although the builders are contractually combined with the architect of record, these projects are not collaborative, let alone integrated.

Owners, this is bad for you.  The biggest problem with this model is that when you have an architect prepare bridging documents, you’ve just made all the big decisions without the input of the building team.  Since 80% of the cost decisions are made during the first 20% of the design, you’ve just cheated yourself out of the biggest source of potential savings that come from collaboration between the contractors and the designers.

On top of that, now you’ve divided your design team into two groups: the architects who did the bridging documents, and the architects who finish the project.  This creates knowledge transfer loss, inefficiencies due to effort repetition, and prevents the second architect from holding a sense of ownership over the design.

In addition, if your selection is based solely on price, the Design-Build team will price exactly what is on the bridging documents; there is no incentive for the team to engage in target value design.  This situation could be improved by offering an incentive through savings participation, but that kind of aggressive innovation requires a high functioning team.  If the selection was based on lowest bid, the team may be too dysfunctional to achieve real gains because the lowest prices generally come from the least experienced and least savvy of the potential participants.  Often in these settings, cost savings are achieved at the expense of quality design, as general contractors under great pressure to achieve aggressive cost savings revert to treating architects and engineers as venders instead of partners.

For owners who want intimate involvement in the process, Design-Build based on low bidding offers another disadvantage.  In order for the Design-Build team to deliver for that low price you were so excited about, they have no choice but to ruthlessly cut you out of the process.  They are carrying so much risk that they can’t afford any of the potential interference, delay, or scope escalation that comes from involving a client in the back-room discussions.

If you have a team that works well together, you move farther to the right on the spectrum.

If you hire the design-build team based on good scoping documents instead of bridging documents, you move farther to the right on the spectrum.  (Partial bridging documents may be a good compromise for public owners whose process requires a bridging step.)

Starting somewhere in the middle of this spectrum, you start seeing successful projectsA successful, collaborative Design-Build project is light years ahead of Design-Bid-Build.

Some projects are pushing the envelope so far that their Design-Build projects look very similar to Integrated Project Delivery (IPD).  Lisa Dal Gallo, a partner at Hanson Bridgett is an expert in IPD and partially integrated projects, including how to modify a Design-Build structure to get very close to an IPD model.  She recently discussed this topic at both the San Diego and Sacramento chapters of the Design-Build Institute of America (DBIA). The discussion was mainly to assist public owners who have design-build capability to improve upon their delivery, but same principles apply to private owners who may not be in the position to engage in a fully integrated process through an IPD delivery method.

Several recent and current projects in California are operating on the far right side of this Design-Build collaboration spectrum, by crafting a custom version of Design-Build that uses IPD principles.  Here’s how they’re doing it:

  • Skipping the Bridging Documents. Instead of using bridging documents as the basis for bidding, owners are creating scoping criteria or partial bridging documents that provide performance and owner requirements, but allow the design team to collaborate on the design and present their own concept to achieve the owner’s goals. Under this type of scenario, the design-build teams would typically be prequalified and then no more than 3 teams would be solicited to participate in design competition.The team is usually selected based on best value.  After engagement, the owner and end users work with the team through the scoping phase and set the price.
  • Integrating the Design-Build entity internally
    • To assist in a change in behavior, the general contractor and major players like architect, engineers, MEP subs, and structural subs can pool a portion of their profit, proportionally, sharing in the gains or pains inflicted based on the project outcome.
    • Through downstream agreements, the major team players can also agree to waive certain liabilities against each other.
    • They enter into a BIM Agreement and share information freely, using BIM to facilitate target value design and a central server to allow full information transparency.
  • Partially integrating with the owner.  The owner can play an active role, participating in design and management meetings.

The extent to which the owner is integrated with the design/build team is a subtle—but crucial—point of differentiation between an extremely collaborative form of Design-Build (which I suggest we call “Integrated Design-Build”) and Integrated Project Delivery.

Here is the crux of the biscuit: Under an IPD model, the owner actually shares in the financial risks and rewards associated with meeting the budget and schedule[1].  Therefore, they are part of the team and get to fully participate in back-of-house discussions and see how the sausage is made.

Under Design-Build, even an Integrated version of Design-Build, the design-build entity is carrying all the financial risk for exceeding a Guaranteed Maximum Price (GMP) and/or schedule, so they deserve to collect all the potential reward if they can figure out how to bring it in faster and cheaper.  Since the owner’s risk for cost and schedule is substantially reduced when the project uses a GMP, the owner doesn’t really deserve a spot at the table once they’ve finished clearly communicating their design and performance criteria (which is what the scoping documents are for).

It can be an awkward thing trying to incorporate a client who wants to be involved, while making sure that client doesn’t request anything above and beyond what is strictly communicated in the scoping documents upon which the GMP is based.

So the key differences between this Integrated Design-Build and full Integrated Project Delivery are:

  • The contract model (a multi-party agreement between Owner, Architect and Contractor vs. an agreement between owner and usually the contractor)

  • The level of owner participation in the decision making process

  • The fee structure and certain waivers of liability (shared risk) between the owner and the other key project team members.

Delivery model diagrams

Figure 2: Traditional design-build is hierarchical in nature. An integrated design-build model is collaborative in nature (but only partially integrates with the owner). An IPD model is fully collaborative with the owner and may or may not include consultants and sub-contractors inside the circle of shared risk & reward, depending on the project.

The IPD contract form of agreement is aimed at changing behaviors, and its contractual structure exists to prompt, reward, and reinforce those behavior changes.  However, full scale IPD is not right for every owner or project; it is another tool in a team’s tool box.  The owner and its consultants and counsel should determine the best delivery method for the project and proceed accordingly.  The important thing to remember is that any delivery model can be adapted to be closer to the ideal collaborative model by making certain critical changes.  What is one thing you might change on your next project to prompt better collaboration?


[1] Under IPD, a Target Cost is set early (similar to a GMP).  If costs exceed that target, it comes out of the design & construction team’s profits.  But if costs go so high that the profit pool is exhausted, the owner picks up the rest of the costs.  If costs are lower than the target, the owner and the team split the savings.


Lisa Dal Gallo

Lisa Dal Gallo is a Partner at Hanson Bridgett, LLP, specializing in assisting clients in determining the best project delivery method to achieve the teams’ goals, developing creative deal structures that encourage use of collaborative and integrated delivery processes and drafting contracts in business English.  She is the founder of California Women in Design + Construction (“CWDC”), a member of the AIA Center for Integrated Practice and the AIA California Counsel IPD Steering Committee, and a LEED AP.  Lisa can be reached at 415-995-5188 or by email at ldalgallo@hansonbridgett.com.

 

 

 

Oscia Wilson headshotOscia Wilson, AIA, MBA is the founder of Boiled Architecture.  After working on complex healthcare facility projects, she became convinced that Integrated Project Delivery (IPD) was key to optimizing construction project delivery.  She founded Boiled Architecture to practice forms of Integrated and highly collaborative project delivery.  She serves on the AIA California Council’s committee on IPD.

via http://www.4Clicks.com – Premier cost estimating and efficient project delivery software ( JOC, SABER, IDIQ, MATOC, SATOC, MACC, POCA, BOA… featuring an exclusively enhanced 400,000 line RSMeans Cost database with line item modifiers and full descriptions and integrated visual estimating/QTO, contract/project/document management, and world class support and training!

Job Order Contracting – JOC – is a proven form of IPD which targets renovation, repair, sustainability, and minor new construction, while IPD targets major new construction.

IPD - Integrated Project Delivery and JOC - Job Order Contracting
IPD – Integrated Project Delivery and JOC – Job Order Contracting
JOC Process
JOC Process

BIM graphic #6

IWMS and EAM are buzzwords!

BIM is the life-cycle management of the built environment supported by digital technology…. EAM and IWMS are “buzzwords”.

 

To achieve efficient the life-cycle management involved a list of competencies, processes, technolgies…  please add to the list!

  1. Collaborative construction delivery methods
  2. Transparency
  3. Common glossary of terms
  4. Common information exchange formats
  5. Management  “buy in”
  6. A focus upon “life-cycle costs” and/or “total cost of ownership” vs. “first costs”
  7. Metrics, Benchmarks, standardized and detail cost information – “you can’t manage what you don’t measure”.

Achievement of efficient life-cycle management of the built environment requires a fundamental shift in how the AECOO (Architecture, Engineering, Construction, Operations, Owner) sector conduct business.  BIM and Cloud Computing are disruptive technologies that will assist in this “transformation”…which as already begun.. while economic and environmental market drivers will assure the transformation.

Adoption of collaborative construction delivery methods such as Integrated Project Delivery (IPD), and Job Order Contracting (JOC) … both decades old… has accelerated, and also are important BIMF - Building Information Management Framework

BIM Technology and Process Road Map
BIM Technology and Process Road Map

change agents.

Via:  www.4Clicks.com – Premier cost estimating and efficient project delivery solutions for JOC, SABER, IDIQ, SATOC, MATOC, MACC ….

 

The Metrics of BIM – The Manage the Built Environment

As the old saying goes…”you can’t manage what you don’t measure”.

 

 

Here’s the beginning of a list of information requirements spanning various domains/competencies, technologies, etc.,
While an important component, the 3D component of BIM has been a very unfortunate distraction.  It appears that many/most have “gone to the weeds” and/or are “recreating the wheel” vs. working on core foundational needs such as the consistent use of appropriate terminology and the establishment of robust, scalable and repeatable business practices, methodologies, standards, metrics and benchmarks for facilities and physical infrastructure management.

It is common terminology that enables effective communication and transparency among the various decision makers, building managers, operators and technicians involved with facilities and physical infrastructure investment and management.

Here are examples of metrics associated with the life-cycle management of the built environment:

Annualized Total Cost of Ownership (TCO) per building per gross area = Rate per square foot

Annualized TCO per building/Current replacement value = Percent of Current Replacement Value (CRV)

Annualized TCO per building/Net assignable square feet = Cost rate per net assignable square feet per building

Annualized TCO per building/Non-assignable square feet = Cost rate per non-assignable square feet per building

Annualized TCO per building/Building Interior square feet = Cost rate per interior square foot per building

Churn Rate

Utilization Rate

AI (Adaptation Index) or PI (Programmatic Index) = PR (Program Requirements) /
CRV (Current Replacement Value)

Uptime or Downtime – Defined in percent, as amount of time asset is suitable for the program(s) served.

Facility Operating Gross Square Foot (GSF) Index (SAM Performance Indicator: APPA 2003)

Custodial Costs per square foot

Grounds Keeping Costs per square foot

Energy Costs per square foot

Energy Usage

Utility Costs per square foot

Waste Removal Costs per square foot

Facility Operating Current Replacement Value (CRV) Index (SAM Performance Indicator: APPA 2003)

Planned/Preventive Maintenance Costs per square foot

Emergency Maintenance Costs as a percentage of Annual Operations Expenditures.

Unscheduled/Unplanned Maintenance Costs as a percentage of Annual Operations Expenditures.

Repair costs (man hours and materials) as a percentage of Annual Operations Expenditures

FCI (Facility Condition Index) = DM (Deferred Maintenance) + CR (Capital Renewal)
/ CRV (Current Replacement Value)

Recapitalization Rate, Reinvestment Rate

Deferred Maintenance Backlog

Facilities Deterioration Rate

FCI (Facility Condition Index) = DM (Deferred Maintenance) + CR (Capital Renewal) /
CRV (Current Replacement Value)

AI (Adaptive Index) or PI (Programmatic Index) = PR (Program Requirements) /
CRV (Current Replacement Value)

FQI (Facility Quality Index) or Quality Index or Index = FCI (Facility Condition Index)+ AI (Adaptive Index)

BIMF - Building Information Management FrameworkVia http://www.4Clicks.com – Premier cost estimating and efficient project delivery software for the built environment – , …

BIM Strategy, Collaboration, and Interoperablity… Getting it right from square one.

The construction industry (architecture, engineering, construction, operations/facility management, business product manufacturers, oversight and regulatory groups), like most other sectors, is in a state of rapid change.

Construction delivery methods are at the center of  this ongoing transformation as they dictate the structure, tone, and legal requirements of any project.  Thus, whether you are involved with construction, renovation, repair, and/or sustainability projects… Integrated Project Delivery – IPD, for new construction, Job Order Contracting – JOC, for minor new construction, renovation, repair, and sustainability and Public Private Partnerships – PPP, are examples of collaborative construction delivery methods that are rapidly replacing traditional and somewhat dysfunctional methods such as Design Bid Build (DBB).

While collaborative construction delivery methods have been in existence for decades and are well proven, they are only recently being more readily adopted.  The drivers for change include environmental, economic, and technology factors.  We are all aware of shrinking resources whether budgetary or non-renewal energy related, as well as associated environmental regulations relative to global warming, the latter of which will become increasingly stringent.     That said, disruptive technologies such as BIM (Building Information Modeling) and Cloud Computing are also a major causal factors  as well as enablers  relative the  business process change so desperately needed with the construction sector.
As collaborative construction delivery methods become more common, the need to share information transparently becomes paramount. Project teams need to adapt to early and ongoing information sharing among distributed team members and organizations.   In the case of JOC (also known as SABER in in the United State Air Force), technology has been available for over a decade to support virtually all aspects of   collaborative project execution from concept thru warranty period.  An example is 4Clicks Project Estimator combined with RSMeans Cost Data, and/or organizational specific unit price books.  With all parties leveraging the same data and following robust, collaborative processes from concept, thru site walk, construction, etc., the net result being  more jobs being done on-time and on-budge with fewer change orders and virtual elimination of the legal disputes, the latter be unfortunately common with traditional methods.

Job Order Contracting Process
Job Order Contracting Process

IPD vs. Traditional

How built environment stakeholders share information and work together will continue to evolve.  The methods in which we, as Owners, Contractors, AEs, etc. participate in this exchange within our domains will determine our ultimate success or failure.

As show in the following graphic, the project delivery methods, while a fundamental element, is just one “piece of the BIM pie”.

Multiple “activities” , business processes” , “competencies”, and “supporting technologies” are involved in BIM.

BIM is  “the life-cycle management of the built environment supported by digital technologies”.

BIM Framework
BIM Framework

The Value of NBIMS = The Value of BIM?

The primary focus of the NBIMS-US™ is to provide open standards to transform the currently inefficient and ineffective  life-cycle management of the built environment…  Is this not the same value provided by BIM?

This transformation is accomplished through the creation and exchange of building information modeling (BIM) information and management processes.  Elements included include reference standards; outlining classifications of data and processes, data exchange formats, requirements for many different types of information exchanges and practice standards; which outline practices and workflows for data modeling, project execution, and robust feedback on success or failures so that assumptions are quickly improved. The metrics by which these open standards are to be evaluated include: total cost of ownership vs. first costs, impacts upon organizational mission, sustainability, life-safety, utilization, up-time, project timelines, fewer change orders, fewer legal disputes, ….

Goals, Objectives, and Benefits of NBIMS and BIM:

  1. Reduce the total cost of ownership of the built environment in concert with the mission of an organization and its relationship to the environment via timely, accurate, re-usable information and associated enhanced decision support capability.
  2. Enable collaboration and information sharing among all shareholders via established products, methods, and information formats.
  3. Front end information gathering, planning, and decision-making to have the greatest positive impact in the overall design, procurement, construction, operations, and decommissioning process, taking advantage of collaborative, integrated project delivery.
  4. Information development and sharing via consensus documents that select a common path forward when multiple divergent paths were once available
  5. Build a growing community of practice which allows progress to be made built upon previous levels of agreement
  6. Share information with software vendors as well as other product and service providers to build solutions that supports a consensus agreement of practitioners
  7. Identify specific reference standards that are used for BIM
  8. Documents “best practices” to potentially become standard practice for creating and managing information be re-used and re-purposed

Building Owner Perspective

  1. How can I better optimizing building performance to contribute to improving overall performance (e.g. financial, environmental, organizational, operational efficiencies) across the lifespan of my physical assets.
  2. Where can I find process documentation and contract language to cost-effectively develop and consistently deploy efficient construction delivery methods, enable high quality and quantity work at a reasonable cost.

Contractor Perspective

  1. An understanding of how to develop long lasting relationships with Owners, AEs, Subs and leverage BIM and associated optimized construction delivery
  2. How to perform more projects that provide a more predictable revenue stream and a reasonable profit margin.

A/E Perspective

  1. Participation in emerging efficient project delivery processes to better acheive design excellence, meeting project schedules and exceeding client service expectations.
  2. An understanding of how to develop long lasting relationships with Owners, Contractors, BPMs …and leverage BIM and associated optimized construction delivery
  3. How to perform more projects that provide a more predictable revenue stream and a reasonable profit margin.

Business Product Manufacturer (BPM) Perspective

1. How can I make my products available to designers and contractors so that they fit in with BIM project delivery processes

2. How should I format my products as BIM objects (e.g. level of graphical detail and business properties) so they are most useful by designers and contractors

3. I am interested in getting designers and contractors to specify and purchase my product

ALL:

1. How to use BIM for specific construction tasks (e.g. cost estimating, material procurement, digital fabrication, valuation of in-place construction, commissioning and handover, safety management)

2. How to mitigate risk.

3. How to organize my organization and project teams to take advantage of BIM processes and technologies.

4. How to participate in emerging efficient project delivery processes to focus on design excellence, meeting project schedules and exceeding client service expectations.

5. I am interested in optimizing staff resources, project profitability, maintaining relationships with my clients and finding the next job

Ballot Cover Letter Statement:

The National BIM Standard is a consensus document, where many ideas are brought together, presented to a variety of people representing different parts of the industry, discussed, debated, and ultimately subjected to the democratic process to determine which ideas rise to the stature of inclusion.

facility-life-cycle-technology-and-process-roadmap1-300x172BIMF - Building Information Management Framework

Related docu,ment – http://fire.nist.gov/bfrlpubs/build04/PDF/b04022.pdf – Cost Analysis of Inadequate Interoperability in the U.S. Capital Facilities Industry Michael P. Gallaher, Alan C. O’Connor, John L. Dettbarn, Jr., and Linda T. Gilday

OMNICLASS vs. UNICLASS / UNICLASS2 – BIM Ontology

OmniClass™ Work Results: a critique (source: NBS.com)

It has been suggested by some that, rather than developing or implementing Uniclass2, we in the UK should switch to OmniClass, used in North America. John Gelder, Head of content development and sustainability, takes a critical look at the OmniClass Work Results Table, comparing it throughout with the Uniclass2 Work Results Table.

OmniClass is the North American equivalent of Uniclass2 and is promulgated by CSI (Construction Specifications Institute) and CSC (Construction Specifications Canada).

Broadly speaking OmniClass is in a similar position to Uniclass 1997, with much the same general limitations, though it is rather more unified. Uniclass articles corresponding to this one include Reclassification and The new Uniclass Work sections table. For a review of OmniClass in general, refer to the separate article OmniClass: a critique.

Scope

Like Uniclass Table J (aka CAWS), the OmniClass Work Results Table (aka MasterFormat) is geared mostly to the specification of systems and products, and so is focused on the construction phase. It doesn’t serve the whole project timeline, as it doesn’t have homes for high-level (early-stage) objects such as Complexes, Activities and Elements. This means that the Table can’t properly serve design-build and design-build-operate procurement (which, in the latter case, typically requires the contractor to be involved from the very beginning of the project, as part of a consortium). Other Tables within OmniClass must be used to structure specifications for Entities, Spaces and Elements. Tables outside OmniClass must be used for other object classes. These would then need to map to each other and to the Work Results Table, in order to properly integrate the specification component of the building information model (BIM) along the project timeline. Given the lack of congruence, this won’t be easy.

The Uniclass2 Work Results Table has homes for objects of all classes from Regions down to Products, so can fully serve the project timeline, and all procurement routes. See Table 5.*

Even mapping between systems and products is problematic because, read with the non-OmniClass SectionFormat, there are no homes for System outline (or compositional) specifications. Indeed, Systems and Products are conflated. This means that the Work Results Table, plus SectionFormat, can’t properly serve BIM, which requires mapping between objects of different classes in the object hierarchy (e.g. this product is part of that system, this system comprises those products). Making this explicit in the specification requires outline specifications. We can’t rely on this mapping being delivered through the geometrical part of BIM (CAD) since many systems and products are not modelled geometrically at all.

The Uniclass2 Work Results Structure Table provides for outline (compositional) specifications all down the object hierarchy, including Systems-to-Products, so fully supports BIM. Table 5 illustrates this (left-hand column).

Table 5: OmniClass and Unclass2 Work Results Tables – scope

Item OmniClass Table 22 Work Results 2011 & SectionFormat 2008 Uniclass2 Work Results Table & Work Results Structure Table
Project management Division 00 Procurement and contracting requirements + Division 01 General requirements Group 00 Project management + Management Table
Region outline Not included Group 02 Regions + Regions Table
Region performance
District outline Group 04 Districts + Districts Table
District performance
Complex outline Group 06 Complexes + Complexes Table
Complex performance
Entity outline Group 08 Entities + Entities Table
Entity performance
Activity outline Group 10 Activities + Activities Table
Activity performance
Space outline Group 12 Spaces + Spaces Table
Space performance
Element outline Group 14 Elements + Elements Table
Element performance
System outline System sections: System outline subsection + Systems Table
System performance Work sections: SF Products subsection System sections: System performance subsection
Products System sections: Products subsection + Products Table
Custom-made products System sections: Custom-made products subsection
Execution Work sections: SF Execution subsection System sections: Execution subsection
System completion Sub-group XX 08 00 Commissioning System sections: System completion subsection
System FM Sub-group XX 01 00 Maintenance System sections: System FM subsection

SectionFormat has a home for the specification of performance and design criteria of products, which in turn are defined as including systems, assemblies, manufactured units, equipment, components, product types and materials. That is, SectionFormat doesn’t really distinguish between products, systems and materials, though OmniClass at large does (in the Products, Work Results and Materials Tables). ‘Performance’ at a higher level was in sub-group 01 80 00 Performance requirements in the 2004 edition of this Table, but this has been dropped in the 2011 edition. As it was actually mostly about elements rather than systems (e.g. 01 83 16 Exterior enclosure performance requirements), the idea is probably that this is specified using a specification aligned to the Elements Table.

The Uniclass2 Work Results Structure Table provides for performance specification of objects all down the object hierarchy, so fully supports contractor (and other) design. It also makes a clear distinction between Elements, Systems and Products (and so on) – this is essential for a rational approach to hierarchical object modelling. Table 5 illustrates this (left-hand column).

In the OmniClass Work Results Table, the commissioning and maintenance of systems (elements, actually) are not described in the system sections, but in separate sections in sub-groups 08 and 01 of each group, respectively, e.g. sub-group 09-08-00 Commissioning of finishes and section 09-01-70 Maintenance of wall finishes (see Table 6). This is rather inconvenient for those wanting to have everything about a given system collected together (though of course this could be managed through reporting in a digital specification tool such as NBS Create).

All aspects of each system, from design to operation, are collected in each of the System sections in the Uniclass2 Work Results Structure Table. Table 5 illustrates this (right-hand column).

Sequence

The general sequence of sections within each Group doesn’t fully reflect construction sequence. For example, operation and maintenance should be last, and commissioning should be second-last, but this isn’t the structure at all. All of this is held in sections that precede those describing the thing yet to be designed and built. See Table 6.

The System section structure in the Uniclass2 Work Results Structure Table fully reflects construction sequence. See Table 5 (right-hand column).

Table 6: OmniClass Work Results Table – section sequence

Fabric example Services example
08-00-00 Openings 23-00-00 Heating, ventilating and air conditioning (HVAC)
• 08-01-00 Operation and maintenance of openings • 23-01-00 Operation and maintenance of HVAC systems
• 08-05-00 Common work results for openings • 23-05-00 Common work results for HVAC
• 08-06-00 Schedules for openings • 23-06-00 Schedules for HVAC
Not used • 23-07-00 HVAC insulation
• 08-08-00 Commissioning of openings • 23-08-00 Commissioning of HVAC
Not used • 23-09-00 Instrumentation and control for HVAC
08-10-00 Doors and frames 23-10-00 Facility fuel systems
Not used 23-20-00 HVAC piping and pumps
08-30-00 Specialty doors and frames 23-30-00 HVAC air distribution
08-40-00 Entrances, storefronts and curtain walls 23-40-00 HVAC air cleaning devices
08-50-00 Windows 23-50-00 Central heating equipment
08-60-00 Roof windows and skylights 23-60-00 Central cooling equipment
08-70-00 Hardware 23-70-00 Central HVAC equipment
08-80-00 Glazing 23-80-00 Decentralized HVAC equipment
08-90-00 Louvers and vents Not used
Conclusion

The OmniClass Work Results Table has deficiencies, specifically with respect to serving the entire project timeline and all procurement routes, and supporting BIM. It has a construction phase focus, and so has no homes for the specification of high-level objects such as Complexes, so it can’t deal with early project stages. System operation and maintenance specifications are isolated from descriptions of the systems themselves, so it doesn’t serve the occupancy phase as well as it might. Together this means that the Table is not well-suited to non-traditional modes of procurement, such as design-build and design-build-operate.

The Work Results Table conflates systems and products, and has no homes for outline or compositional specifications. Together these mean that the Table doesn’t support hierarchical object mapping, a key requirement for a BIM specification. This is exacerbated by the Table – and OmniClass as a whole – not supporting classification of high-level object classes and systems. Without these object classes we cannot produce a complete ‘building’ information model.

Finally, the basic design-build-operate sequence is not implemented fully in the Work Results Table, nor in SectionFormat (e.g. a proposed FM subsection has not eventuated; system-wide performance requirements are not distinguished from those for ‘mere’ products). This makes the default structure rather messy.

BIM requires a unified approach to classification if it is to work well, e.g. with simple mapping between classification Tables. OmniClass cannot deliver this, as it stands. Uniclass2 can.

* Note: Tables 1 to 4 are available in OmniClass™: a critique

via http://www.4Clicks.com – Leading cost estimating and efficient project delivery software software solutions for JOC, SABER, IDIQ, MATOC, SATOC, MACC, POCA, BOA, BOS … featuring and exclusively enhanced 400,000 line item RSMeans Cost Database, visual estimating / automatic quantity take off ( QTO), contract, project, and document mangement, all in one application.