A Snapshot of International BIM Status and Goals

Year Country Action Reference
2007 Finland Requires IFC BIM in its projects and intends to have integrated model-based operation in future Senate Properties
UK Standard: Collaborative production of architectural, engineering and construction information. Code of Practice. BS 1192:2007
2008 USA Mandatory BIM for government projects GSA; USACE
2010 Norway Requires IFC BIM for new buildings Statsbygg
3 BIM pilot projects running Norwegian Defence Estates Agency
Singapore Establish Centre for construction IT help key agencies and construction firms to kick start BIM Singapore BIM Roadmap 2012
UK Building Information Management – A Standard Framework and Guide to BS 1192 Joint publication of BS 1192:2007 and BSI/CPI
2011 Singapore Work with key agencies on pilot projects Singapore BIM Roadmap 2012
UK Creation of the implementation plan and team to deliver Government Construction Strategy (May)
Evaluate trial projects and recommend (ongoing)
Standard Due: Library Objects for Architecture, Engineering and Construction. Recommended 2D symbols of building elements for use in building information modelling. BS 8541-2
Standard Due: Library Objects for Architecture, Engineering and Construction: Identification and grouping BS 8541-1
Report/Strategy Paper for the Government Construction Client Group (March) BIM Industry Working Group
2012 Korea Public Procurement Service to fully adopt IFC-based open BIM
Singapore BIM as part of public sector building project procurement Singapore BIM Roadmap 2012
Work with key agencies to prepare consultants and contractors who undertake the public sector projects to be BIM ready
BIM Guide – published Singapore BIM Guide
Finland Common BIM Requirements – published buildingSMART Finland
UK Begin phased roll out ot all Government projects (Summer) Government Construction Strategy
Define and mandate expected standard (information set) for Government projects (April)
Identify trial projects in multiple departments to achieve delivery via 3D fully collaborative BIM (July)
COBie-UK-2012 BIM Task Group
Standard due: Library Objects for Architecture, Engineering and Construction: Shape and measurements BS 8541-3
Standard due: Library Objects for Architecture, Engineering and Construction: Attributes for specification and simulation BS 8541-4
Building Information Management Management – Information requirements for the capital delivery phase of construction projects PAS 1192-2:2012
Operational Asset Management – Processes and data for the commissioning, handover, operation and occupation stages BS 1192-3 (not yet published)
2013 Australia Develop and deliver a BIM awareness and promotion program for key government and broader industry participants (July 1) Implementation Strategy – National BIM Initiative Report
Develop and start delivery of BIM training packages to industry practitioners (July 1)
Enable progressive access to an Australian library of generic BIM objects and information for manufactured products that comply with Australian BIM standards (July 1)
Singapore Mandatory Architecture BIM e-Submissions for all new building projects . 20,000 m² Singapore BIM Roadmap 2012
2014 Australia Develop Australian BIM contracts (July 1) Implementation Strategy – National BIM Initative Report
Encourage the inclusion of BIM as a collaborative technology for both professional education and vocational training in the tertiary sector (July 1)
Develop industry protocols for information exchange to underpin BIM and collaborative practice (July 1)
Coordinate activity between relevant sectors of the Australian economy to enable integrated access to land, geospatial and building information (July 1)
Singapore Mandatory Engineering BIM e-Submissions for all new building projects . 20,000 m² Singapore BIM Roadmap 2012
2015 Australia Develop Australian technical codes and standards for BIM (July 1) Implementation Strategy – National BIM Initative Report
Align Australian BIM codes and standards with international equivalents (july 1)
Develop a model-based building regulatory compliance process demonstrator (July 1)
Develop and implementation plan for the transition of Australian regulatory codes and compliance mechanisms to model-based performance based systems (july 1)
Require BIM for Australian Government procurement for built environment projects (July 1)
Encourage State and Territory Governments and the private sector to require BIM for procurement for built environment projects (July 1)
Singapore Mandatory Architecture & Engineering BIM e-Submissions for all new building projects . 5,000 m² Singapore BIM Roadmap 2012
Target = Singapore Construction Industry to use BIM widely
2016 UK Deliver Level 2 BIM (Collaboration) – Introduce a progressive programme of mandated use of fully collaborative Building Information Modelling for Government projects. Level 2 = Managed 3D environment held in separate discipline “BIM(M)” tools with attached data; Commercial data managed by an ERP; Integration on the basis of proprietary interfaces or bespoke middleware could be regarded as “pBIM” (proprietary); the approach may utilise 4D programme data and 5D cost elements. UK Government Construction Strategy & BIM BIM Strategy Paper (2011)
 Source:  Susan Keenliside, 2013-email, via http://www.4Clicks.com
2020 Singapore Realise the vision of a highly integrated and technologically advanced construction sector that will be led by progressive firms and supported by a skilled and competent workforce. Singapore BIM Roadmap 2012

Building Information Management Framework – BIMF – People, Process, Technology

While at first perhaps a bit intimidating…  illustrating the life-cycle management within a BIM context is relatively straightforward.

BIM – Life-cycle Management Perspective

BIMF - Building Information Management Framework


The purpose of this Framework is to provide  a general guide that your team can quickly customize to your specific requirements.   Like a restaurant menu or a travel guide, you can visualize the resources available and decide on an appropriate strategic configuration of options.

Just begin in the Center and work thru this Action Agenda using, when available and appropriate, tested  processes and templates.   Using these guidelines, set up a BIM Management structure with your stakeholders.

 The Building Information Management Framework (BIMF) illustrates a how people, processes, and technology interact to support the built environment throughout its life-cycle.  Based upon the associated level of detail, an operating model can be developed to more efficiently identify,  prioritize, and meet the current and future needs of built environment stakeholders (Owners, AE’s, Contractors, Occupants, Oversight Groups…)

More specifically, modular, Model View Definitions (MVD), associated exchange specifications and common data architectures [for example: Industry Foundation Class (IFC), OMNICLASS] can  help to integrate multi-discipline Architecture, Engineering, Construction (AEC) “activities”,  “business processes”, “associated competencies” and “supporting technologies”  to meet overall requirements with a goal of continuous improvement.

WORK GROUP FORMATION – Roles and Relationships;

PROCESS MAP – who does what, in which sequence, and why;

EXCHANGE REQUIREMENTS & BASIC BUSINESS RULES – Overall guidelines for information integration

EXCHANGE REQUIREMENT MODELS – Specific information “maps”

GENERIC MODEL VIEW DEFINTION (MVD) – Strategic approach incorporating guidelines for information format, content, and use;



(Adapted from: IMPROVING THE ROBUSTNESS OF MODEL EXCHANGES USING PRODUCT MODELING ‘CONCEPTS’ FOR IFC SCHEMA –Manu Venugopal, Charles Eastman, Rafael Sacks, and Jochen Teizer – with ongoing assistance/input from NBIMS3.0 Terminology Subcommittee)

Model View Definitions (MVD) and associated exchange specifications, provide the best benefit if they are modular and reusable and developed from Industry Foundation Class (IFC) Product Modeling Concepts.   Model views and overall life-cycle management are similar in this regard.

Building Information Modeling (BIM) tools serving the Architecture, Engineering, Construction (AEC) span multiple  “activities”,  “business processes”, “associated competencies” and “supporting technologies”, and each may required different internal data model representation to suit each domain.  Data exchange is therefore a critical aspect.   Inter and intra domain standardized data architectures and associated adoption of matching robust processes are really the first step toward successfully managing the built environment.

The Process Side of BIM = Collaboration: People, Process, & Technology

Open BIM Standards – COBIE, OMNICLASS – IFC / COBIE Report 2012

BIM adoption remains a challenge due to the fact that its many supporters don’t focus upon it’s true relevance, the efficient life-cycle management of the built environment.

While any new technology has  barriers to adoption, changing the “status quo”, the fundamental nature of how a business sector does business requires a major event.   The cultural and process changes associated with BIM, namely the need for all stakeholders to collaborate, share information in a transparent manner, and share in risk/reward, remain chasms to be crossed by many/most.    Fortunately, those currently or previously involved with Integrated Project Delivery and Job Order Contracting (the latter a form of IPD specifically targeting renovation, repair, sustainability, and minor new construction) have experience with these “novel” business concepts.  Both IPD and JOC have proven track records and have clearly demonstrated the ability to get more work done on-time and on-budget to the benefit of all involved parties.

A key aspect of BIM, collaboration, can only be efficiently accomplished with a commonly understood and shared taxonomy including terms, definitions, and associated metrics.

So called “open BIM”, such as buildingSMART International’s Industry Foundation Classes (IFCs), are important to enabling collaboration as well as interoperability between BIM software applications.     COBie, a naming convention for facility spaces/components, etc., and its counterparts OMINCLASS, including MASTERFORMAT and UNIFORMAT,  etc. … can be leveraged and generated by IFC appears a goal worth additional focus on a local and global level.   That said, support for COBie, OMNICLASS, IFC, etc. varies and,  far from mainstream.

As noted in the IFC / COBIE Report 2012, BIM’s success depends upon the ability to:

  1. Create model data in a consistent format
  2. Exchange that data in a common language
  3. Interrogate the data intelligently.

There are multiple knowledge domains, technologies, and process involve in the life-cycle management of the built environment, all of which need a common data architecture, taxonomy, set of metrics, etc.

The IFC / COBIE Report 2012 correctly points out that pressing needs remain:

  1. The need for standards

  2. The need for guidance

  3. The need for enhanced IFC import export routines from BIM applications

  4. The need for agreed descriptions of who requires what data and when

  5. The need for an improved audit trail to allow greater confidence in collaboration.

Also, and I paraphrase / embellish…

  1. “Enforcement” of IFC by buildSmartalliance and all BIM “proponents”  is required.
  2. Domain experts must leveraged and queried to deliver structured data templates accordingly.  The industry needs well defined model view definition for each COBie data drop. From this can come clear guidance on the “level of detail” required at each COBie data drop. This will give a shared understanding of what information is required from and by whom and at what stage.  For example needs of Facilities Managers are required to inform the content of the COBie data drops. Facility management must be considered as early as the briefing process.
  3. Weaknesses in the IFC import /export processes exist in current software product implementation. These weaknesses make manual checking necessary and reduce confidence.  Improvement  is vital here.
  4. While IFC can be used when generating COBie data, people will use whatever works and is available. The market requires.  complete flexibility to choose what systems they use. Innovation should not be stifled by mandating a process to achieve the required data.
  5. COBIE is far from complete, but a good starting point.
  6.  Microsoft Excel  provides a view of the structured info of COBie data and one way 0f reporting data, however, in NOT a good authoring tool, nor does it support hierarchal relational data schema.





The Business Value of BIM in North America 2007 – 2012

The Emperor is still naked!

Is the trend analysis of the Business Value of BIM in North America from 2007 through 2012  reality, or are many of us walking around with rose colored glasses?

I ask you, do you really believe the following statement ” Now in 2012, 71% of architects, engineers, contractors, and owners report they have become engaged with BIM on their projects …”.    If you define BIM as the life-cycle management of the built environment supported by digital technology, I can tell you that either the survey is flawed… a lot of people don’t know what BIM is… or we have a lot of folks inflating the truth.   There is NO WAY 71% of ANY of the groups are “engaged with BIM on their projects”…period, end of story.

Playing with Statistics?   The 71% average appears to have been calculated by taking a simple average of the “adoption rate” from architects, engineers, and contractors” from three size classes of firms “small, medium, and large”.   If I am correct, this is just plan WRONG.   Most firms in the U.S. are small business, thus a weighted average must be applied.   The “adoption rate” for small firms 50%… a number I also believe to be inaccurate.

I just came back from the NIBS Conference.   This is without question, the most valuable, authoritative meeting relative to BIM in the United States.  How many people were there you might ask?   A few hundred at most.

So, what does any of this matter?   Simple really.   Until our industry stops the hype and focus on important issues relative to BIM, we will continue to be mired in inaction.   The AECOO is the most unproductive business sector and also has the lowest rate of technology adoption.  These are facts….   if one wishes to be interested in facts that is.

Here some thoughts as to where emphasis must be placed:

  1. Greater adoption and use of collaborative construction delivery methods:  IPD – Integrated Project Delivery, and JOC – Job Order Contracting.  The later is a form of IPD specifically targeting renovation, repair, sustainability, and minor new construction projects.   Let’s face it, 80% or more of all funding for the built environment will be going in renovation, repair, and sustainability.
  2. Emphasis on business process, strategy, and standardized terms, metrics, and data architecture vs. technology.   Technology is NOT the problem, is the lack of clear, robust business strategy and processes, and domain knowledge… largely on the part of Owners that is the primary obstacle to progressive change.   Owners write the checks, they are “where the buck stops”.
  3. Focus upon life-cycle costs / total cost of ownership, vs. first costs.
  4. A bit more on data standards….   OMNICLASS, UNIFORMAT, MASTERFORMAT, COie, IFC, et al… all have there roll.  Some will survive, some may not.   The point is that unless we have standardized terms, definitions, detailed reference and actual cost information (localized materials, equipment, and labors), physical and functional condition metrics, etc. etc. etc.    …  we can’t collaborate or improve productivity!
  5. Participation by all stakeholders – Owners, AE’s, Contractors, SubContractors, Building Users, Oversight Groups, Regulatory Bodies, Building Product Manufacturers, Communities, ….






2013-WSP Group
2013-WSP Group

NIBS – Building Innovation 2013 Conference

I am writing this from Washington, D.C. while participating in the NIBS Building Innovation 2013 Conference.   The buildingSMART alliance conference is part of this gathering under the title “Integrating BIM: Moving the Industry Forward.”

BIM education and practice requires focus upon process and associated return-on-investment.   Robust communication and adoption of standard and/or “best practice” construction planning and delivery methods specific to efficient life-cycle management of the built environment are sorely needed.

It is amazing that Integrated Project Delivery – IPD, and “IPD-lite”… the latter being Job Order Contracting and SABER which are forms of IPD specifically for renovation, repair, sustainability and minor new construction…  are not being brought to the forefront as critical aspects of BIM.    It is the construction planning and project delivery method that sets the tone of any project and ultimately dictate relationships and associated successes or failures.

Collaboration, transparency, and performance-based win-win relationships are necessary components of a BIM-based philosophy.  Yet, these and other critical aspects; including  defensible, accurate, and transparent cost estimating and standardized construction cost data architectures, are neither in  forefront of current thinking nor receiving an adequate allocation of resources.


Far too much emphasis continues to be place on the 3d visualization component aspect of BIM, IFC format pros and cons, and other “technology” areas.


Technology is NOT what is holding back BIM, it is the apparent lack of understanding of … and associated failure to adopt … facility life-cycle management processes… combined and what can only be described as a pervasive “not invented here” attitude.

Many of of our peers are reinventing the wheel over and over again at tremendous cost to all stakeholders…Owners, AEs, Contractors, Subs, Oversight Groups, Building Users, Building Product Manufacturers, …not to mention our Economy and our Environment, vs. sharing information and working toward common goals.

BIM – 3D Visualization – IFC – IFC4

buildingSMART International has published the last release candidate 4 of IFC4


The last release candidate 4 of the upcoming IFC4 standard is now available.  It can be accessed and downloaded from the official buildingSMART International website, at:

This release candidate is the last preview before publishing IFC4 finally by end of this year. The work is led by the Model Support Group of buildingSMART International http://buildingsmart-tech.org/about-us/msg.

The major highlights of this release candidate are:

  • new ifcXML4, developed according to the new simple ifcXML technology, is part of the specification
  • fully integrated with new MVD technology, using the new mvdXML technology and ifcDoc tool
  • definitions of fundamental MVD concepts now form part of the specification
  • using IFC4 will provide a much easier kick-start for later MVD developments by reusing and extending such concepts
  • all property sets and properties are registered at the buildingSMART data dictionary and link to it
  • many more fully linked examples, many documentation improvements and instantiation diagrams
  • automatically generated change logs for schema and property sets

Participate in this last public review cycle before IFC4 final release and to submit any issues and recommendations for
improvement using the IFC4 Review Issue database at http://buildingsmart-tech.org/jira/browse/IFR.
The review period is scheduled to end on 31. October 2012. Thereafter IFC4 final will be completed.

via http://www.4Clicks.com – Premier cost estimating and efficient project delivery software for Job Order Contracting – JOC, IDIQ, SABER, SATOC, MATOC, MACC, POCA, BOA, featuring: Visual Estimating / QTO, enhanced 400,000 line item RS Means cost database with modifiers and full descriptions, contract / project / estimate / and document management, collaborative multi-user interface.