BIM & Efficient Life-cycle Management of Facilities & Infrastructure

bim and efficient life-cycle facility management

Efficient life-cycle management of facilities and other physical infrastructure is impossible until real property owners are better educated and truly capable in their role as stewards of the built environment.

LEAN best management practices and associated collaborative construction delivery methods (Integrated project delivery – IPD, Job Order Contracting – JOC, etc.) are REQUIRED in order to deliver quality renovation, repair, sustainability, and new construction projects on-time and on-budget.

Most Owners do not have the educational background or professional experience needed to consistently deploy LEAN construction delivery methods and/or life-cycle management.

job order contracting

job order contacting - JOC

BIM Objects, Data, and Information – More than a 3D Pretty Picture – Soooo Much More!

A picture paints a thousand words,

but never underestimate the power of text

(Adapted from Source: NBS.com)

Stefan Mordue, Technical Author and Architect

BIM objects are much more than just graphical representations. Using them as placeholder to connect to a wider source of information provides for a powerful and rich source of information. 

‘Author it once, and in the right place; report it many times’

Information in the Building Information Model (BIM) comes from a variety of sources, such as 3D visualization tools ( Autodesk Revit or Nemetschek Vectorworks, Archicad, Bentley Systems …) as well as cost estimating, computerized maintenance management systems (CMMS), capital planning and management systems (CPMS), geographical information systems (GIS), building automation systems (GIS),  model checkers and specification software.

All BIM objects have properties, and most also have geometries (although some do not, for example a paint finish). To avoid duplication, information should be both structured and coordinated. 

Some information is more appropriately located in the ‘geometrical’ part of the BIM object while other information is more suited to the ‘properties’ part, such as the specification. The specification is part of the project BIM, and objects live in the specification.   In traditional documentation we would ‘say it once, and in the right place’, however with BIM, we want to ‘author it once, and in the right place, to be able to report it many times’.

Figure 1: Appropriate location of information

Figure 1: Appropriate location of information

‘A picture paints a thousand words, but never underestimate the power of text’

Let’s take an analogy of a BIM object representing a simple cavity wall. The object will tell us the width of the brickwork and height of the wall. However at a certain point in the project cycle it is the written word that is needed to take us to a deeper level of information. It is within a textual context that we describe the length, height and depth of the brick. It is words that are used to describe the mortar joint and wall ties.

BIM objects are as much about the embedded data and information as they are about the spaces and dimensions that they represent graphically.

It is this connection to a wider source of information that really empowers the object, making it a rich source of information. Think of BIM objects if you will as a ‘place holder’ – not only a physical representation of the real life physical properties of the said object but also a home for non-graphical information such as performance criteria, physical and functional condition data, life-cycle data, detailed and current cost data (materials, equipment, and labor),  and operational information.

‘A new generation of specifiers is being empowered by BIM. We can begin to specify at a much earlier stage in the process’

Specifications were once undertaken by the specification expert, often once the detail design was completed. A new generation of specifiers is being empowered by BIM. We can begin to specify at a much earlier stage in the process.

In reality “specifiers” are now a team of stakeholders – Owners, Contactors, Subs, AE’s, Oversight Groups ….

By connecting the BIM object to an NBS Create specification, a direct link can be made to NBS technical guidance and standards, at the point where the designer most needs them. For example,  if the designer is a subscriber to the Construction Information Service (CIS), then any technical documents cited in the specification that are available can be downloaded instantly.

Figure 2: NBS Revit tool bar

Figure 2: NBS Revit tool bar

‘We have recently integrated geometric BIM objects with the corresponding NBS Create specification clauses to achieve a greater connection between the two’

BIM and BIM workflows are consistently being refined and updated as they become more commonplace and as standards and protocols emerge.   While we can never solve all coordination issues, we hope to improve coordination by linking databases, objects and eventually coordinate key property sets.

Traditionally, a value that was represented on a drawing may not correctly corresponded with the value within the specification simply due to a ‘typo’. An example being where a ’60 minute fire door’ has been recorded on the drawing but has been recorded as ’90 minutes fire rating’ within the specification. Aside from this coordination debate, practices will also need to decide and establish office policies on where information is recorded. While the specification system has detailed guidance and links to standards, regulations and suggested values, geometric BIM software has great visualization analysis and instance scheduling functionality.

Figure 3: Connection to a wider source of information empowers the object

Figure 3: Connection to a wider source of information empowers the object

At present, the NBS National BIM Library objects are classified using both the draft Uniclass 2 Work result code and the System name to give a deeper link between the object and specification. The NBS National BIM Library contains a number of objects that connect at a ‘product’ level (e.g. hand driers, baths, individual doorsets) while others work at a ‘system’ level (e.g. cubicle, partition, door and signage systems). Yet other objects are at an ‘element’ level (i.e. made up of a number of systems) such as external walls.

Following a period of industry consultation, Uniclass 2 is now being finalized for publication during 2013. Classification of content in the National BIM Library and NBS Create will then be updated.

National BIM Library Parameters

NBSReference NBS section/clause number 45-35-72/334
NBSDescription The full description of an object Hand driers
NBSNote Where a second system which is related to the BIM object can be described =[Blank]
NBSTypeID A reference to the object for the user if one or more is used with the project
Help URL of a website where additional help notes are available http://www.nationalbimlibrary.com/
Uniclass2 Uniclass2 Product Pr-31-76-36
IssueDate The issue date of the object 2012-12-06
Version The version of the object 1.1

A hand drier is an example of an object that links nicely to an associated product clause (NBSReference=45-35-72/334). Using tools such as NBS Create and the NBS Revit plug in tool, the corresponding product will automatically be captured; it can then be used to enrich the object with information such as power rating and noise levels.

A doorset is an example of an object that maps beautifully to an NBS Create System outline clause. For example using WR 25-50-20/120 Doorset System, we can then specify system performance, component and accessory products (e.g. glazing type, fasteners and threshold strips) as well as execution.

Certain NBS National BIM Library objects are at an ‘element level’ where they comprise a number of systems. In this situation we give a primary work results classification, the NBSReference. In addition, to help the user, we add the Uniclass 2 element code in an extra parameter field.

The following example is a Unit wall element comprising 100 mm thick stone, 100 mm mineral wool insulation batts and 100 mm concrete block, lined with 12.5 mm gypsum plasterboard on 25 mm dabs.

WR 25-10-55/123 ‘External multiple leaf wall above damp proof course masonry system’ has been used for the primary reference. From this System outline we can specify the stone facing, insulation and concrete block, together with DPC, lintels, mortar, cavity closers (which all in turn have product codes). A further system outline, WR 25-85-45/140 Gypsum board wall lining system, is given, from which the lining can be specified.

‘This year will mark the 40th anniversary of the launch of NBS and we are now seeing project information being coordinated through intelligent objects’

An object could potentially relate to two different systems. An example of this would be a rainscreen cladding object. The following example is an aluminium cassette panel rainscreen system with metal frame, weather barrier, insulation, concrete block and plasterboard lining. This particular system could be either a ‘Drained and back ventilated rain screen cladding system’ 25-80-70/120 or a ‘Pressure equalized rain screen cladding system’ 25-80-70/160. The detail which would differentiate between the two is not shown in the geometric object itself but rather in the detail that would be found within the specification. When used in conjunction with the NBS plug-in tool, you are presented with the option to select the most appropriate system, and then to specify it to the appropriate level of detail.

Figure 4: Technology is enabling better processes and connection

Figure 4: Technology is enabling better processes and connection

We are now beginning to see project information being coordinated through intelligent objects.  The classification system, structure of data and technology are enabling better processes and will allow us to move a step closer towards full collaborative BIM.

via www.4Clicks.com – Leading cost estimating and efficient project delivery software  solutions for JOC, SABER, IDIQ, MATOC, SATOC, MACC, POCA, BOA, BOS … featuring and exclusively enhanced 400,000 line item RSMeans Cost Database, visual estimating / automatic quantity take off ( QTO), contract, project, and document management, all in one application.

The Current Status of OMNICLASS – A Critical BIM Requirement

(source: OmniClass Development Committee Status Report – April 16, 2013)

To:        OmniClass Development Committee members
From:   Dianne Davis, OmniClass Development Committee Chair
Kelly Sawatzky, OmniClass Development Committee Vice Chair
Greg Ceton, OmniClass Secretariat

These OmniClass Status Reports will be issued every few months through this review cycle. They are
designed to keep you apprised of ongoing OmniClass development work and afford you the opportunity
to ask questions or get involved. The report is organized to give updates on the development work
being performed by the three Working Groups (WGs) that are each independently working on a
different area of OmniClass development.

We are just commencing the 2012-2014 review cycle. Generally speaking, WGs are just beginning to
identify review issues and set priorities for areas of work needed.

OmniClass Spaces WG (Lead: Alan Edgar)
(Table Responsibilities: 13 – Spaces by Function and 14 – Spaces by Form)
The Spaces WG is charged with reviewing Table 13 – Spaces by Function and Table 14 – Spaces by Form
to determine the nature of any development work needed to expand or modify Table 13 contents, to
provide a baseline review of Table 14, as it has not been reviewed in depth since its initial
publication in 2006, and to harmonize the work of other existing space classifications with the revised contents
of both Tables.  The Working Group has commenced review work on both Table 13 – Spaces by Function and Table 14 –
Spaces by Form.  Table 13 review has been focused on laboratory space organization to start. Additional review of
medical spaces is also anticipated.
Table 14 review has begun with comparison of form-based aspects of other classification systems,
including those used as references in the prior work on Table 14. Some simplification of the table
to address purely formal concerns may be needed.
If you would like to participate in review work on either of these tables or have any comments to
share, please send them to Spaces WG lead Alan Edgar at alan.edgar@rsparch.com and to Greg Ceton at
gceton@csinet.org

OmniClass Products WG (Lead: Robert Keady)
(Table Responsibilities: 23 – Products)
The Products WG is charged with examining the structure of Table 23 – Products and confirming that
the contents and organization support the needs of users.

Work has commenced with the examination of Table 23 – Products. The WG Lead, Robert Keady, has
started cross-referencing Table 23 with Tables 21 (Elements) and 22 (Work Results). Additionally,
there have been equipment additions (200 to date) proposed to Table 23. Currently there is an
effort being made to identify Work Group members who will focus on specialized areas for review
within Table 23. This review cycle, the Work Group will also be focusing on adding definitions for
Table 23 entries.
If you have any comments or resources to lend to this effort, please send them to Properties WG
Lead Robert Keady at robertkeady@hotmail.com and to Chris Gummo at cgummo@csinet.org
OmniClass Activities and Processes WG (Lead: Dianne Davis)

The Properties and Materials WG is charged with examining and revising content and organization of
Table 32 – Services, Table 35 – Tools, and Table 36 – Information in light of recent work on Table
31 – Phases, Table 33 – Disciplines, and Table 34 – Organizational Roles.

Work has commenced with the examination of Table 32 – Services. The WG has tapped Robert Keady,
CEM, CDSM, FMP for his specialized knowledge of tasks, and how they may be fit into the structure
of Table 32 while limiting the impact on the table as a whole. The group has agreed that any
changes to Tables 32 and 36 must be in response to intended or known table usage that currently not
being met. Adding content or improving the tables without reference to a real improved process will
not satisfactorily address the WG charge.
Definition creation and harmonization with existing OmniClass Tables and creation of transition
matrix for each reviewed table will be commenced further along in the review cycle.
Work on other tables will be initiated after the work on Table 32 – Services has progressed
further.
If you have any comments or resources to lend to this effort, please send them to Properties WG
Lead Dianne Davis at  d.davis@aecinfosystems.com and to Rob Holson at rholson@csinet.org

If the work of any of these Working Groups interests you, or you would like to participate
in their development work, please contact Greg Ceton at gceton@csinet.org

The Business Value of BIM in North America 2007 – 2012

The Emperor is still naked!

Is the trend analysis of the Business Value of BIM in North America from 2007 through 2012  reality, or are many of us walking around with rose colored glasses?

I ask you, do you really believe the following statement ” Now in 2012, 71% of architects, engineers, contractors, and owners report they have become engaged with BIM on their projects …”.    If you define BIM as the life-cycle management of the built environment supported by digital technology, I can tell you that either the survey is flawed… a lot of people don’t know what BIM is… or we have a lot of folks inflating the truth.   There is NO WAY 71% of ANY of the groups are “engaged with BIM on their projects”…period, end of story.

Playing with Statistics?   The 71% average appears to have been calculated by taking a simple average of the “adoption rate” from architects, engineers, and contractors” from three size classes of firms “small, medium, and large”.   If I am correct, this is just plan WRONG.   Most firms in the U.S. are small business, thus a weighted average must be applied.   The “adoption rate” for small firms 50%… a number I also believe to be inaccurate.

I just came back from the NIBS Conference.   This is without question, the most valuable, authoritative meeting relative to BIM in the United States.  How many people were there you might ask?   A few hundred at most.

So, what does any of this matter?   Simple really.   Until our industry stops the hype and focus on important issues relative to BIM, we will continue to be mired in inaction.   The AECOO is the most unproductive business sector and also has the lowest rate of technology adoption.  These are facts….   if one wishes to be interested in facts that is.

Here some thoughts as to where emphasis must be placed:

  1. Greater adoption and use of collaborative construction delivery methods:  IPD – Integrated Project Delivery, and JOC – Job Order Contracting.  The later is a form of IPD specifically targeting renovation, repair, sustainability, and minor new construction projects.   Let’s face it, 80% or more of all funding for the built environment will be going in renovation, repair, and sustainability.
  2. Emphasis on business process, strategy, and standardized terms, metrics, and data architecture vs. technology.   Technology is NOT the problem, is the lack of clear, robust business strategy and processes, and domain knowledge… largely on the part of Owners that is the primary obstacle to progressive change.   Owners write the checks, they are “where the buck stops”.
  3. Focus upon life-cycle costs / total cost of ownership, vs. first costs.
  4. A bit more on data standards….   OMNICLASS, UNIFORMAT, MASTERFORMAT, COie, IFC, et al… all have there roll.  Some will survive, some may not.   The point is that unless we have standardized terms, definitions, detailed reference and actual cost information (localized materials, equipment, and labors), physical and functional condition metrics, etc. etc. etc.    …  we can’t collaborate or improve productivity!
  5. Participation by all stakeholders – Owners, AE’s, Contractors, SubContractors, Building Users, Oversight Groups, Regulatory Bodies, Building Product Manufacturers, Communities, ….

ROI -BIM

 

 

 

 

2013-WSP Group
2013-WSP Group
BIG DATA = BIM
BIG DATA = BIM

BIM Evolution

In the long history of humankind, those who learned to collaborate and improvise most effectively have prevailed.
– Charles Darwin

BIM, the life-cycle management of the built environment supported by digital technology, requires a fundamental change in how the construction (Architects, Contractors, Engineers) and facility management (Owners, Service Providers, Building Product Manufactures, Oversight Groups, Building Users) sectors operate on a day-to-day basis.  

BIM, combined and  Cloud Computing are game changers.  They are disruptive technologies with integral business processes/practices that demand collaboration, transparency, and accurate/current information displayed via common terminology.

The traditional ad-hoc and adversarial business practices commonly associated with Construction and Facility Management are changing as we speak.    Design-bid-build and even Design-Build will rapidly go by the wayside in favor of the far more efficient processes of Integrated Project Delivery – IPD, and Job Order Contracting – JOC, and similar collaborative programs.  (JOC is a form of integrated project delivery specifically targeting facility renovation, repair, sustainability, and minor new construction).

There is no escaping the change.   Standardized data architectures (Ominclass, COBie, Uniformat, Masterformat) and cost databases (i.e. RSMeans), accesses an localized via cloud computing are even now beginning to be available.   While historically, the construction and facility management sectors have lagged their counterparts (automotive, aerospace, medical, …)  relative to technology and LEAN business practices, environmental and economic market drivers and government mandates are closing the gap.

The construction and life-cycle management of the built environment requires the integration off several knowledge domains, business “best-practices”, and technologies as portrayed below.   The efficient use of this BIG DATA is enabled by the BIM, Cloud Computing, and Integrated Project Delivery methods.

Image

The greatest challenges to these positive changes are  the CULTURE of the Construction and the Facility Management Sectors.  Also, an embedded first-cost vs. life-cycle or total cost of ownership perspective.  An the unfortunate marketing spotlight upon the technology of 3D visualization vs. BIM.   Emphasis MUST be place upon the methods of how we work on a daily basis…locally and globally  − strategic planning, capitial reinvestment planning, designing collaborating, procuring, constructing, managing and operating.  All of these business processes have different impacts upon the “facility” infrastructure and  construction supply chain, building Owners, Stakeholders, etc., yet communication terms, definitions, must be transparent and consistently applied in order to gain  greater efficiencies.

Some facility life-cycle management are already in place for the federal government facility portfolio and its only a matter of time before these are expanded and extended into all other sectors.

BIM, not 3D visualization, but true BIM or Big BIM,  and Cloud Computing will connect information from every discipline together.  It will not necessarily be a single combined model.  In fact the latter has significant drawbacks.    Each knowledge domain has independent areas of expertise and requisite process that would be diluted and marginalized if managed within one model.   That said, appropriate “roll-up” information will be available to a higher level model.   (The issue of capability and productivity marginalization can be proven by looking a ERP and IWMS systems.  Integration of best-in-class technology and business practices is always support to systems that attempt to do everything, yet do not single thing well.)

Fundamental Changes to Project Delivery for Repair, Renovation, Sustainability, and New Construction Projects MUST include:

  • Qualifications Based or Best Value Selection
  • Some form of pricing transparency and standardization
  • Early and ongoing information-sharing among project stakeholders
  • Appropriate distribution of risk
  • Some form of financial incentive to drive performance / performance-based relationships

Where will BIM / Efficient Life-cycle Management Supported by Digital Technology Be in Five Years

A workshop with members from the BIM Academy, NBS, and various other was recently held to postulate on this topic.

As one might expect topics encompassed;  design, procurement, policy and standards, technology, education and culture, success to date, areas for innovation, challenges, and barriers to adoption.

As facilities costs are second only to personal/labor costs for most organizations, the need for breadth, consistency and transparency of BUILDING INFORMATION to understand, articulate, prioritize, and act upon requirements is readily apparent.    Information must be timely, accurate, transparent, actionable,  traceable, and shared collaboratively.

Change management is a requirement, and those adapt will excel, those that do not will fall behind.

A core, yet perhaps obvious observation was that ” There is a growing realization of the importance of data structure, quality and transferability, rather than geometry alone. We need to stop talking less about “the model” and more about “the data”.
“One participant noted a recent US comparative diagram mapping CAD adoption in the 1980s and recent BIM adoption. The trajectory has been much more rapid for BIM, however from recent discussions with US practitioners it appears the US is advanced in geometric, spatial and visual BIM uses but progress in the productive use of structured data, particularly into the operational phase, seems to be falling behind the UK.”

BIM management is misunderstood by some clients who regard it as purely a technological challenge which can be simply be solved by a software purchase and training, others are intimidated by a perceived complex restructuring of management processes. The truth lies somewhere between and follow the principles of Latham – get the process right before you think of the technology.

The role of IPD (Integrated Project Design) and JOC (Job Order Contracting) will become even more important.  It was also noted that collaborative working doesn’t necessarily demand multidisciplinary organizations. There is a balance to be struck between the efficiency gained from freshness and innovation often achieved from different organizations coming to together on a project basis and working collaboratively, however traditional  disjointed methods of procurement common in industry, such as design-bid-build or even design-build or CMAR do not fully encourage this.  IPD and JOC, the later a form of IPD for facility renovation, repair, and construction are proven methods of developing long term,  win-win multi-party relationships. “It’s crucial to get the right people involved early enough and understanding what outcomes they need from the start.”, and both IPD and JOC enforce this behavior.

Perhaps most importantly the topic of education rose front and center:

“It was agreed that this community also needs to escape from its silos. Some universities are starting to adopt a multidisciplinary curriculum supported by BIM, but this needs to become the standard not the exception. “Why not have a combined construction degree with final years dedicated to a specific discipline and practical work experience in between?””