Real Property – Best Management Practices

As a real property owner, can you answer the following questions?

  1. What is the Average Facility Condition Index – FCI?
  2.  What is the average cost of a Requirement relative to your Deferred Maintenance?
  3.  What is the average Requirement Cost per Square Foot?
  4.  What is the total Replacement Cost for your portfolio? Per Building?
  5.   What is the total Number of your building Assets?
  6.   What is the total Square Foot Area of your buildings?

Information-based decision support is critical to the efficient life-cycle management of the built environment.    How are you monitoring functionality, obsolescence, life safety, ADA, building codes, appearance, capacity, utilization, energy use, integrity …

These are just a sampling of basic data needed to better allocate your resources.

Federal Real Property Facility Managment

jobordercontracting.org

 

Life-cycle Management of the Built Environment – BIM – Current Status

BIM usage, despite reports to contrary, remains minimal among large building portfolio Owners.  That is to say that the “life-cycle management of the built environment supported by digital technology” is not being practiced in an efficient, transparent, consistent manner by many, if any, public or private sector Owners.    The question is why?

Reason #1 – Most Owners don’t understand the basic tenants/requirements of life-cycle management.

Reason #2 – The lack of a robust BIM Ontology

Despite popular opinion, technology is NOT the issue.

 

BIM is in desperate need of a core glossary.   A core glossary a defining dictionary that enables definition of concepts, especially for newcomers to a language or field of study. It contains a small working vocabulary and definitions for important or frequently encountered concepts, usually including idioms or metaphors useful in a culture.

In a general sense, a glossary contains explanations of concepts elevant to a certain field of study or action. In this sense, the term is related to the notion of ontology.  

Automatic methods exist to a transform a glossary into an ontology or a computational lexicon.  Computational approaches to the automated extraction of glossaries start from domain terminology and extract one or more items (glosses) for each term of interest. Glosses can then be analyzed to extract  hypernyms of the defined term and other lexical and semantic relations.

References

  1. R. Navigli, P. Velardi. From Glossaries to Ontologies: Extracting Semantic Structure from Textual Definitions, Ontology Learning and Population: Bridging the Gap between Text and Knowledge (P. Buitelaar and P. Cimiano, Eds.), Series information for Frontiers in Artificial Intelligence and Applications, IOS Press, 2008, pp. 71-87.
  2. R. Navigli. Using Cycles and Quasi-Cycles to Disambiguate Dictionary Glosses, Proc. of 12th Conference of the European Association for Computational Linguistics (EACL 2009), Athens, Greece, March 30-April 3rd, 2009, pp. 594-602.
  3. J. Klavans and S. Muresan. Evaluation of the Definder System for Fully Automatic Glossary Construction. In Proc. of American Medical Informatics Association Symp., 2001, pp. 324–328.
  4. A. Fujii, T. Ishikawa. Utilizing the World Wide Web as an Encyclopedia: Extracting Term Descriptions from Semi-Structured Texts. In Proc. 38th Ann. Meeting Assoc. for Computational Linguistics, 2000, pp. 488–495.
  5. P. Velardi, R. Navigli, P. D’Amadio. Mining the Web to Create Specialized Glossaries, IEEE Intelligent Systems, 23(5), IEEE Press, 2008, pp. 18-25.

The Metrics of BIM – The Manage the Built Environment

As the old saying goes…”you can’t manage what you don’t measure”.

 

 

Here’s the beginning of a list of information requirements spanning various domains/competencies, technologies, etc.,
While an important component, the 3D component of BIM has been a very unfortunate distraction.  It appears that many/most have “gone to the weeds” and/or are “recreating the wheel” vs. working on core foundational needs such as the consistent use of appropriate terminology and the establishment of robust, scalable and repeatable business practices, methodologies, standards, metrics and benchmarks for facilities and physical infrastructure management.

It is common terminology that enables effective communication and transparency among the various decision makers, building managers, operators and technicians involved with facilities and physical infrastructure investment and management.

Here are examples of metrics associated with the life-cycle management of the built environment:

Annualized Total Cost of Ownership (TCO) per building per gross area = Rate per square foot

Annualized TCO per building/Current replacement value = Percent of Current Replacement Value (CRV)

Annualized TCO per building/Net assignable square feet = Cost rate per net assignable square feet per building

Annualized TCO per building/Non-assignable square feet = Cost rate per non-assignable square feet per building

Annualized TCO per building/Building Interior square feet = Cost rate per interior square foot per building

Churn Rate

Utilization Rate

AI (Adaptation Index) or PI (Programmatic Index) = PR (Program Requirements) /
CRV (Current Replacement Value)

Uptime or Downtime – Defined in percent, as amount of time asset is suitable for the program(s) served.

Facility Operating Gross Square Foot (GSF) Index (SAM Performance Indicator: APPA 2003)

Custodial Costs per square foot

Grounds Keeping Costs per square foot

Energy Costs per square foot

Energy Usage

Utility Costs per square foot

Waste Removal Costs per square foot

Facility Operating Current Replacement Value (CRV) Index (SAM Performance Indicator: APPA 2003)

Planned/Preventive Maintenance Costs per square foot

Emergency Maintenance Costs as a percentage of Annual Operations Expenditures.

Unscheduled/Unplanned Maintenance Costs as a percentage of Annual Operations Expenditures.

Repair costs (man hours and materials) as a percentage of Annual Operations Expenditures

FCI (Facility Condition Index) = DM (Deferred Maintenance) + CR (Capital Renewal)
/ CRV (Current Replacement Value)

Recapitalization Rate, Reinvestment Rate

Deferred Maintenance Backlog

Facilities Deterioration Rate

FCI (Facility Condition Index) = DM (Deferred Maintenance) + CR (Capital Renewal) /
CRV (Current Replacement Value)

AI (Adaptive Index) or PI (Programmatic Index) = PR (Program Requirements) /
CRV (Current Replacement Value)

FQI (Facility Quality Index) or Quality Index or Index = FCI (Facility Condition Index)+ AI (Adaptive Index)

BIMF - Building Information Management FrameworkVia http://www.4Clicks.com – Premier cost estimating and efficient project delivery software for the built environment – , …

Climate Change Adaptation for Built Infrastructure

Attend a presentation titled Climate Change Adaptation for Built Infrastructure.  During this presentation, Kim Magraw (US Department of Interior), Bridget Deemer (Washington State University), John Hall (US Department of Defense), and Ann Kosmal (General Services Administration) will provide the latest update on the preliminary results on research and information needs identified in the FY 2013 Agency Adaptation Plans.

The details for the meeting are as follows:

Wednesday, June 19, 2013

9:00 a.m. to 10:15 a.m.

Room 109

Keck Center of the National Academies

500 Fifth Street NW

Washington, DC

If you are planning to attend in person, please register on-line at the following website to ensure that your name is on the security guard’s sign-in sheet.

http://www8.nationalacademies.org/EventRegistration/public/Register.aspx?event=9785CA5B

For those that will not attend in person, you can view the presentation via WebEx; please register on-line at the following website:

http://sgiz.mobi/s3/4fa1bf9badb3

Above is from the Federal Facilities Council and shared via 4Clicks.com – leading provider of cost estimating and efficient project delivery software and services for JOC – Job Order Contracting, SABER, IDIQ, MATOC, SATOC, MACC, POCA, BOA, BOS and more.  Featuring an exclusively enhanced 400,000+ RSMeans unit price cost database and integrated contract, project, and document management, as well as visual estimating and electronic quantify takeoff (QTO).

Building Information Management Framework – BIMF – People, Process, Technology

While at first perhaps a bit intimidating…  illustrating the life-cycle management within a BIM context is relatively straightforward.

BIM – Life-cycle Management Perspective

BIMF - Building Information Management Framework

 

The purpose of this Framework is to provide  a general guide that your team can quickly customize to your specific requirements.   Like a restaurant menu or a travel guide, you can visualize the resources available and decide on an appropriate strategic configuration of options.

Just begin in the Center and work thru this Action Agenda using, when available and appropriate, tested  processes and templates.   Using these guidelines, set up a BIM Management structure with your stakeholders.

 The Building Information Management Framework (BIMF) illustrates a how people, processes, and technology interact to support the built environment throughout its life-cycle.  Based upon the associated level of detail, an operating model can be developed to more efficiently identify,  prioritize, and meet the current and future needs of built environment stakeholders (Owners, AE’s, Contractors, Occupants, Oversight Groups…)

More specifically, modular, Model View Definitions (MVD), associated exchange specifications and common data architectures [for example: Industry Foundation Class (IFC), OMNICLASS] can  help to integrate multi-discipline Architecture, Engineering, Construction (AEC) “activities”,  “business processes”, “associated competencies” and “supporting technologies”  to meet overall requirements with a goal of continuous improvement.

WORK GROUP FORMATION – Roles and Relationships;

PROCESS MAP – who does what, in which sequence, and why;

EXCHANGE REQUIREMENTS & BASIC BUSINESS RULES – Overall guidelines for information integration

EXCHANGE REQUIREMENT MODELS – Specific information “maps”

GENERIC MODEL VIEW DEFINTION (MVD) – Strategic approach incorporating guidelines for information format, content, and use;

MODEL VIEW DEFINTION & IMPLEMENTATION SPECIFICATIONS   – Specific format, content, and use

PROJECT AGREEMENT REQUIREMENTS – LEVEL OF DEVELOPMENT (LOD) – Defined “project” deliverables

(Adapted from: IMPROVING THE ROBUSTNESS OF MODEL EXCHANGES USING PRODUCT MODELING ‘CONCEPTS’ FOR IFC SCHEMA –Manu Venugopal, Charles Eastman, Rafael Sacks, and Jochen Teizer – with ongoing assistance/input from NBIMS3.0 Terminology Subcommittee)

Model View Definitions (MVD) and associated exchange specifications, provide the best benefit if they are modular and reusable and developed from Industry Foundation Class (IFC) Product Modeling Concepts.   Model views and overall life-cycle management are similar in this regard.

Building Information Modeling (BIM) tools serving the Architecture, Engineering, Construction (AEC) span multiple  “activities”,  “business processes”, “associated competencies” and “supporting technologies”, and each may required different internal data model representation to suit each domain.  Data exchange is therefore a critical aspect.   Inter and intra domain standardized data architectures and associated adoption of matching robust processes are really the first step toward successfully managing the built environment.

The Process Side of BIM = Collaboration: People, Process, & Technology

Energy-Efficiency Standards and Green Building Certification Systems Used by the Department of Defense for Military Construction and Major Renovations -2103

Efficient project delivery methods such as JOC, Job Order Contracting, and SABER are an important element in the renovation, repair and sustainability of facilities.

The incremental costs to design and construct high-performance or green buildings typically range from zero to eight percent higher (0 to 8%) than the costs to design and construct conventional buildings.

The additional incremental costs to design and construct high-performance or green buildings are relatively small when compared to total life-cycle costs.

Effective operation of high-performance buildings requires well-trained facilities managers.

 

Finding 1: The committee did not identify any research studies that conducted a traditional benefit-cost analysis to determine the long-term net present value savings, return on investment, or long-term payback related to the use of ASHRAE Standard 90.1-2010, ASHRAE Standard 189.1-2011, and the LEED or Green Globes green building certification systems.

 

Finding 2: There is some limited evidence to indicate that provisions within ASHRAE Standard 189.1-2011 may need to be selectively adopted if use of this standard is to be cost effective in the DOD operating environment.

 

Finding 3. Research studies indicate that the incremental costs to design and construct high-performance or green buildings typically range from 0 to 8 percent higher than the costs to design and construct conventional buildings, depending on the methodology used in the study and the type of building analyzed. The additional incremental costs to design and construct high-performance or green buildings are relatively small when compared to total life-cycle costs.

 

Finding 5: The evidence from the literature search indicates that high-performance or green buildings can result in significant reductions in energy use and water use. The cost savings associated with the reductions in energy and water use will vary by geographic region, by climate zone, and by building type.

 

Finding 6: Not every individual high-performance or green building achieved energy or water savings when compared to similar conventional buildings.

 

Finding 9. Effective operation of high-performance buildings requires well-trained facilities managers.

 

Recommended Approach 1. Continue to require that new buildings or major renovations be designed to achieve a LEED-Silver or equivalent rating in order to meet the multiple objectives embedded in laws and mandates related to high-performance buildings.

 

Recommended Approach 3. Put policies and resources in place to measure the actual performance of the Department of Defense’s high-performance, green, and conventional buildings to meet multiple objectives.

Source: Energy-Efficiency Standards and Green Building Certification Systems Used by the Department of Defense for Military Construction and Major Renovations, NRC

via ww.4Clicks.com – Premier technology for cost estimating and efficient project delivery – JOC, Job Order Contracting, SABER, IDIQ, SATOC, MATOC, MACC, BOCA, BOA, BOS… featuring and exclusively enhanced 400,000+ line item RSMeans Cost Data electronic database.

3D, 4D, 5D BIM Growth — UK

BIM Life-cycle Managment of the Built Environment Supported by Digital Technology

A recent study by NBS provides a snapshot of  BIM (Building Information Modelling) implementation within the UK’s construction industry.

BIM_Report_Infographic_2013

Conducted between December 2012 and February 2013, a cross section of 1,350 professionals spanning a range of business sizes and disciplines from across the industry including architecture, engineering and surveying were included.

71%  of respondents to the NBS survey agreed that BIM represents the ‘future of project information’.

39% confirmed that they were now actually using BIM.

Fewer than half of respondents are aware of the different levels of BIM, despite Level 2 being    mandatory on all Government projects by the end of 2016.

74% agreeing that ‘the industry is ‘not clear enough on what BIM is yet’.

Only one-third of those questioned claim to be ‘very’ or ‘quite’ confident in their BIM knowledge and skills.

Despite the uncertainty around the subject, the survey once again supported the view that the greater use of BIM is unstoppable with 73% agreeing that clients will increasingly insist on its use, 66% saying the same about contractors and 51% confirming that the Government ‘is on the right track with BIM’.

Of those who have adopted BIM, more than half believe that the introduction of BIM has resulted in greater cost efficiencies whilst three-quarters report increased coordination of construction documents. Improved productivity due to easy retrieval of information and better quality visualisations were other gains.

NBS-NationlBIMReport2013-single

Via http://www.4Clicks.com – Premier software and service for  cost estimating and efficient construction project delivery – JOC – Job Order Contracting,  SABER, IPD, IDIQ, SATOC, MATOC, MACC, POCA, BOA, BOS.  Featuring exclusively enhanced 400,000 RSMeans Construction Cost Database.