BIM (Building Information Management, Modeling, Model) vs. EVM (Earned Value Managment) vs. TCO (Total Cost of Ownership)

BIM, EVM, TCO (or TCM – Total Cost Management) are all inter-related  

BIM is the life-cycle management of the built environment supported by digital technologies. 

TCM is effective application of professional and technical expertise to planand control resources, costs, profitability and risks. Simply stated, it is a systematic approach to managing cost throughout the life-cycle of any enterprise, program, facility, project, product, or service. This is accomplished through the application of cost engineering and cost management principles (I assert this aspect is somewhat incorrect…it not only cost engineering and cost managemt principles, but rather the application and integration multi-discipline competencies;…but hey this definition is from the AAECI, so how can I complain?). , proven methodologies and the latest technology in support of the management process. It can also be considered the sum of the practices and processes that an enterprise uses to manage the total life-cycle cost investment in its portfolio of strategic assets.  (Source: (PUBLIC REVIEW DRAFT) AACE® International Recommended Practice No. 82R-13 EARNED VALUE MANAGEMENT (EVM) OVERVIEW AND RECOMMENDED PRACTICES CONSISTENT WITH ANSI EIA-748)

Image

Image

EVM has two critical flaws…

1. No mention of the need for collaborative project delivery methods, examples in construction sector being IPD – Integrate Project Delivery and JOC – Job Order Contracting.  I argue that EVM is little more than an accounting number crunching exercise unless embedded within a collaborative project delivery methods.  (History BTW proves me write on this… just as in the case of ISO 9000, consultant made millions while little true improvement in fundamental business processes was gained).

2. No mention of functional as well as physical metrics.  Both are required in terms of a product, building, etc. 

 

So, what is needed?

A complete ontology for each sector (built infrastructure, products, etc.).  A life-cycle management strategy noting all required competencies, process, technologies, stakeholder, etc. etc.

For example…

Image

And a rich listing of metrics.

https://buildinginformationmanagement.wordpress.com/2013/07/10/the-metrics-of-bim-the-manage-the-built-environment/

 

The Metrics of BIM – The Manage the Built Environment

As the old saying goes…”you can’t manage what you don’t measure”.

 

 

Here’s the beginning of a list of information requirements spanning various domains/competencies, technologies, etc.,
While an important component, the 3D component of BIM has been a very unfortunate distraction.  It appears that many/most have “gone to the weeds” and/or are “recreating the wheel” vs. working on core foundational needs such as the consistent use of appropriate terminology and the establishment of robust, scalable and repeatable business practices, methodologies, standards, metrics and benchmarks for facilities and physical infrastructure management.

It is common terminology that enables effective communication and transparency among the various decision makers, building managers, operators and technicians involved with facilities and physical infrastructure investment and management.

Here are examples of metrics associated with the life-cycle management of the built environment:

Annualized Total Cost of Ownership (TCO) per building per gross area = Rate per square foot

Annualized TCO per building/Current replacement value = Percent of Current Replacement Value (CRV)

Annualized TCO per building/Net assignable square feet = Cost rate per net assignable square feet per building

Annualized TCO per building/Non-assignable square feet = Cost rate per non-assignable square feet per building

Annualized TCO per building/Building Interior square feet = Cost rate per interior square foot per building

Churn Rate

Utilization Rate

AI (Adaptation Index) or PI (Programmatic Index) = PR (Program Requirements) /
CRV (Current Replacement Value)

Uptime or Downtime – Defined in percent, as amount of time asset is suitable for the program(s) served.

Facility Operating Gross Square Foot (GSF) Index (SAM Performance Indicator: APPA 2003)

Custodial Costs per square foot

Grounds Keeping Costs per square foot

Energy Costs per square foot

Energy Usage

Utility Costs per square foot

Waste Removal Costs per square foot

Facility Operating Current Replacement Value (CRV) Index (SAM Performance Indicator: APPA 2003)

Planned/Preventive Maintenance Costs per square foot

Emergency Maintenance Costs as a percentage of Annual Operations Expenditures.

Unscheduled/Unplanned Maintenance Costs as a percentage of Annual Operations Expenditures.

Repair costs (man hours and materials) as a percentage of Annual Operations Expenditures

FCI (Facility Condition Index) = DM (Deferred Maintenance) + CR (Capital Renewal)
/ CRV (Current Replacement Value)

Recapitalization Rate, Reinvestment Rate

Deferred Maintenance Backlog

Facilities Deterioration Rate

FCI (Facility Condition Index) = DM (Deferred Maintenance) + CR (Capital Renewal) /
CRV (Current Replacement Value)

AI (Adaptive Index) or PI (Programmatic Index) = PR (Program Requirements) /
CRV (Current Replacement Value)

FQI (Facility Quality Index) or Quality Index or Index = FCI (Facility Condition Index)+ AI (Adaptive Index)

BIMF - Building Information Management FrameworkVia http://www.4Clicks.com – Premier cost estimating and efficient project delivery software for the built environment – , …

Sustainability – Building Performance Database – BPD – U.S. DOE

The Buildings Performance Database (BPD) unlocks the power of building energy performance data. The platform enables users to perform statistical analysis on an anonymous dataset of tens of thousands of commercial and residential buildings from across the country. Users can compare performance trends among similar buildings to identify and prioritize cost-saving energy efficiency improvements and assess the range of likely savings from these improvements.  Register/Access

Key Features

  • The BPD contains actual data on tens of thousands of existing buildings — not modeled data or anecdotal evidence.
  • The BPD enables statistical analysis without revealing information about individual buildings.
  • The BPD cleanses and validates data from many sources and translates it into a standard format.

Analysis Tools

  • Peer Group Tool. Allows users to peruse the BPD and create peer groups based on specific building types, locations, sizes, ages, equipment and operational characteristics. Users can compare the energy use of their own building to a peer group of BPD buildings.
  • Retrofit Analysis Tool. Allows users to analyze the savings potential of specific energy efficiency measures. Users can compare buildings that utilize one technology against peer buildings that utilize another.
  • Coming Soon!
    • Data Table Tool. Allows users to generate and export statistical data about peer groups.
    • Financial Forecasting Tool. Forecasts cash flows for energy efficiency projects.
    • Application Programming Interface (API). Allows external software to conduct analysis of the BPD data.

Sustainability and Energy Scorecards for Federal Buildings

OMB Sustainability and Energy Scorecards

via 4Clicks.com, premier software for cost estimating and efficient project delivery methods – IPD, JOC, SABER, SATOC, MATOC, MACC, POCA, BOA …

On April 19, 2011, 24 Federal agencies and departments released, for the first time, the Office of Management and Budget (OMB) Sustainability and Energy Scorecards. These scorecards enable agencies to target and track the best opportunities to lead by example in clean energy; and to meet a range of energy, water, pollution, and waste reduction targets.

Through the OMB scorecard process, agencies are assessed on several sustainability areas, including: energy intensity; water intensity; fleet petroleum use; greenhouse gas pollution; green building practices; and, renewable energy use. Agencies are also evaluated on demonstrating continuous progress towards implementing additional statutory or Executive Order targets and goals reflected in their annual Sustainability Plans, such as green purchasing and electronics stewardship. The scorecard employs a simple evaluation system: green for success; yellow for mixed results; and red for unsatisfactory.

Agencies are also evaluated on demonstrating continuous progress towards implementing additional statutory or Executive Order targets and goals reflected in their annual Sustainability Plans, such as fleet management and green buildings. CEQ and OMB will work with agency leadership to craft strategies for improvement and provide agencies with additional support and assistance as agencies begin to develop their Sustainability Plans for next year.  Agency Sustainability Plans, which are required by EO 13514, are due in June, and are posted publicly on agency websites.