3D, 4D, 5D BIM Growth — UK

BIM Life-cycle Managment of the Built Environment Supported by Digital Technology

A recent study by NBS provides a snapshot of  BIM (Building Information Modelling) implementation within the UK’s construction industry.

BIM_Report_Infographic_2013

Conducted between December 2012 and February 2013, a cross section of 1,350 professionals spanning a range of business sizes and disciplines from across the industry including architecture, engineering and surveying were included.

71%  of respondents to the NBS survey agreed that BIM represents the ‘future of project information’.

39% confirmed that they were now actually using BIM.

Fewer than half of respondents are aware of the different levels of BIM, despite Level 2 being    mandatory on all Government projects by the end of 2016.

74% agreeing that ‘the industry is ‘not clear enough on what BIM is yet’.

Only one-third of those questioned claim to be ‘very’ or ‘quite’ confident in their BIM knowledge and skills.

Despite the uncertainty around the subject, the survey once again supported the view that the greater use of BIM is unstoppable with 73% agreeing that clients will increasingly insist on its use, 66% saying the same about contractors and 51% confirming that the Government ‘is on the right track with BIM’.

Of those who have adopted BIM, more than half believe that the introduction of BIM has resulted in greater cost efficiencies whilst three-quarters report increased coordination of construction documents. Improved productivity due to easy retrieval of information and better quality visualisations were other gains.

NBS-NationlBIMReport2013-single

Via http://www.4Clicks.com – Premier software and service for  cost estimating and efficient construction project delivery – JOC – Job Order Contracting,  SABER, IPD, IDIQ, SATOC, MATOC, MACC, POCA, BOA, BOS.  Featuring exclusively enhanced 400,000 RSMeans Construction Cost Database.

BIM Evolution

In the long history of humankind, those who learned to collaborate and improvise most effectively have prevailed.
– Charles Darwin

BIM, the life-cycle management of the built environment supported by digital technology, requires a fundamental change in how the construction (Architects, Contractors, Engineers) and facility management (Owners, Service Providers, Building Product Manufactures, Oversight Groups, Building Users) sectors operate on a day-to-day basis.  

BIM, combined and  Cloud Computing are game changers.  They are disruptive technologies with integral business processes/practices that demand collaboration, transparency, and accurate/current information displayed via common terminology.

The traditional ad-hoc and adversarial business practices commonly associated with Construction and Facility Management are changing as we speak.    Design-bid-build and even Design-Build will rapidly go by the wayside in favor of the far more efficient processes of Integrated Project Delivery – IPD, and Job Order Contracting – JOC, and similar collaborative programs.  (JOC is a form of integrated project delivery specifically targeting facility renovation, repair, sustainability, and minor new construction).

There is no escaping the change.   Standardized data architectures (Ominclass, COBie, Uniformat, Masterformat) and cost databases (i.e. RSMeans), accesses an localized via cloud computing are even now beginning to be available.   While historically, the construction and facility management sectors have lagged their counterparts (automotive, aerospace, medical, …)  relative to technology and LEAN business practices, environmental and economic market drivers and government mandates are closing the gap.

The construction and life-cycle management of the built environment requires the integration off several knowledge domains, business “best-practices”, and technologies as portrayed below.   The efficient use of this BIG DATA is enabled by the BIM, Cloud Computing, and Integrated Project Delivery methods.

Image

The greatest challenges to these positive changes are  the CULTURE of the Construction and the Facility Management Sectors.  Also, an embedded first-cost vs. life-cycle or total cost of ownership perspective.  An the unfortunate marketing spotlight upon the technology of 3D visualization vs. BIM.   Emphasis MUST be place upon the methods of how we work on a daily basis…locally and globally  − strategic planning, capitial reinvestment planning, designing collaborating, procuring, constructing, managing and operating.  All of these business processes have different impacts upon the “facility” infrastructure and  construction supply chain, building Owners, Stakeholders, etc., yet communication terms, definitions, must be transparent and consistently applied in order to gain  greater efficiencies.

Some facility life-cycle management are already in place for the federal government facility portfolio and its only a matter of time before these are expanded and extended into all other sectors.

BIM, not 3D visualization, but true BIM or Big BIM,  and Cloud Computing will connect information from every discipline together.  It will not necessarily be a single combined model.  In fact the latter has significant drawbacks.    Each knowledge domain has independent areas of expertise and requisite process that would be diluted and marginalized if managed within one model.   That said, appropriate “roll-up” information will be available to a higher level model.   (The issue of capability and productivity marginalization can be proven by looking a ERP and IWMS systems.  Integration of best-in-class technology and business practices is always support to systems that attempt to do everything, yet do not single thing well.)

Fundamental Changes to Project Delivery for Repair, Renovation, Sustainability, and New Construction Projects MUST include:

  • Qualifications Based or Best Value Selection
  • Some form of pricing transparency and standardization
  • Early and ongoing information-sharing among project stakeholders
  • Appropriate distribution of risk
  • Some form of financial incentive to drive performance / performance-based relationships

BIM Strategy and Change Management II

BIM (Building Information Modeling) is the life-cycle management of the built environment supported by digital technologies.  As such it is a process of collaboration, continuous improvement, transparency, and integration.   3D distractions aside,  achieving optimal return-on-investment (ROI) on BIM requires focus upon change management, first and foremost.  Ad-hoc business practices, traditional construction delivery methods, and legacy software must be cast aside.

BIM is managing information to improve understanding. BIM is not CAD. BIM is not 3D. BIM is not application oriented. BIM maximizes the creation of value. Up, down, and across the built environment value network. In the traditional process, you lose information as you move from phase to phase. You make decisions when information becomes available, not necessarily at the optimal time.  BIM is not a single building model or a single database. Vendors may tell you that everything has to be in a single model to be BIM. It is not true. They would be more accurate describing BIM as a series of interconnected models and databases. These models can take many forms while maintaining relationships and allowing information to be extracted and shared. The single model or single database description is one of the major confusions about BIM.(http://4sitesystems.com/iofthestorm/books/makers-of-the-environment/book-3/curriculum-built-world/categories/introductionbim-integration/)

The principles of BIM:

  • Life-cycle management: Process-centric , longer term planning  and technologies that consider total cost of ownership, support decision making with current, accurate information,  and link disparate knowledge domains and technologies.
  • Collaborative Delivery Processes:  Integrated Project Delivery (IPD) procurement and construction delivery processes that consider and combine the knowledge and capabilities of all stake holders – Owners, AEs, Contractors, Business Product Manufacturers, Oversight Groups, Service Providers, and the Community.  (i.e.  IPD, Job Order Contracting/JOC)
  • Standards and Guidelines:  Common glossary of terms, metrics, and benchmarks that enable efficient, accurate communication on an “apples to applies” basis.
  • Collaborative, Open Technologies and Tools:   Cloud-based systems architectures that enable rapid, scalable development, unlimited scalability on demand, security, real-time collaboration, and an full audit trail.

(Johnson et al. 2002) – There is an interrelationship between business goals, work processes, and the adoption of information technology. That is, changes in business goals generally require revising work processes which can be enhanced further by the introduction of information technology. But we also recognized that innovations in information technology creates possibilities for new work processes that can, in turn, alter business goals  In order to understand how information technology influences architectural practice it is important to understand all three of these interrelated elements.
Business Goals…   Work processes  ….   Information  technology
require/create               require/create                    require/create

(Via http://www.4Clicks.com – Premier cost estimating and efficient construction project delivery – JOC, SABER, IDIQ, SATOC, MATOC, MACC, BOCA, BOA.  Exclusively enhanced 400,000 RSMeans Cost Database with full descriptions and modifiers.)

Sustainability –  “to create and maintain conditions, under which humans and nature can exist in productive harmony, that permit fulfilling the social, economic, and other requirements of present and future generations.”  – US Executive Order 13423

Ceasel – Patents Pending

BIM Framework