Moving from Design-Build, DB, to Integrated Project Delivery, IPD

Providing the opportunity for the kind of collaboration that the construction industry so badly needs….

Design-Build has a spectrum, ranging from almost as dysfunctional …. all the way to almost as collaborative as Integrated Project Delivery.

Shifting Design-Build toward IPD

This blog entry was co-authored by Oscia Wilson and Lisa Dal Gallo

We are big proponents of Design-Build because it places designers and builders in the same room, thus providing the opportunity for the kind of collaboration that the construction industry so badly needs.  Opportunity for collaboration, however, is not the same as a guarantee of collaboration.  Design-Build has a spectrum, ranging from almost as dysfunctional as Design-Bid-Build all the way to almost as collaborative as Integrated Project Delivery.

Design Build continuum

Figure 1: Depending on how the Design-Build structure is implemented, a project can be nearly identical to an IPD structure or very dysfunctional

On the left of this spectrum, you have those Design-Build projects that use bridging documents, lowest bidder selection, and a team that doesn’t work well together.  Although the builders are contractually combined with the architect of record, these projects are not collaborative, let alone integrated.

Owners, this is bad for you.  The biggest problem with this model is that when you have an architect prepare bridging documents, you’ve just made all the big decisions without the input of the building team.  Since 80% of the cost decisions are made during the first 20% of the design, you’ve just cheated yourself out of the biggest source of potential savings that come from collaboration between the contractors and the designers.

On top of that, now you’ve divided your design team into two groups: the architects who did the bridging documents, and the architects who finish the project.  This creates knowledge transfer loss, inefficiencies due to effort repetition, and prevents the second architect from holding a sense of ownership over the design.

In addition, if your selection is based solely on price, the Design-Build team will price exactly what is on the bridging documents; there is no incentive for the team to engage in target value design.  This situation could be improved by offering an incentive through savings participation, but that kind of aggressive innovation requires a high functioning team.  If the selection was based on lowest bid, the team may be too dysfunctional to achieve real gains because the lowest prices generally come from the least experienced and least savvy of the potential participants.  Often in these settings, cost savings are achieved at the expense of quality design, as general contractors under great pressure to achieve aggressive cost savings revert to treating architects and engineers as venders instead of partners.

For owners who want intimate involvement in the process, Design-Build based on low bidding offers another disadvantage.  In order for the Design-Build team to deliver for that low price you were so excited about, they have no choice but to ruthlessly cut you out of the process.  They are carrying so much risk that they can’t afford any of the potential interference, delay, or scope escalation that comes from involving a client in the back-room discussions.

If you have a team that works well together, you move farther to the right on the spectrum.

If you hire the design-build team based on good scoping documents instead of bridging documents, you move farther to the right on the spectrum.  (Partial bridging documents may be a good compromise for public owners whose process requires a bridging step.)

Starting somewhere in the middle of this spectrum, you start seeing successful projectsA successful, collaborative Design-Build project is light years ahead of Design-Bid-Build.

Some projects are pushing the envelope so far that their Design-Build projects look very similar to Integrated Project Delivery (IPD).  Lisa Dal Gallo, a partner at Hanson Bridgett is an expert in IPD and partially integrated projects, including how to modify a Design-Build structure to get very close to an IPD model.  She recently discussed this topic at both the San Diego and Sacramento chapters of the Design-Build Institute of America (DBIA). The discussion was mainly to assist public owners who have design-build capability to improve upon their delivery, but same principles apply to private owners who may not be in the position to engage in a fully integrated process through an IPD delivery method.

Several recent and current projects in California are operating on the far right side of this Design-Build collaboration spectrum, by crafting a custom version of Design-Build that uses IPD principles.  Here’s how they’re doing it:

  • Skipping the Bridging Documents. Instead of using bridging documents as the basis for bidding, owners are creating scoping criteria or partial bridging documents that provide performance and owner requirements, but allow the design team to collaborate on the design and present their own concept to achieve the owner’s goals. Under this type of scenario, the design-build teams would typically be prequalified and then no more than 3 teams would be solicited to participate in design competition.The team is usually selected based on best value.  After engagement, the owner and end users work with the team through the scoping phase and set the price.
  • Integrating the Design-Build entity internally
    • To assist in a change in behavior, the general contractor and major players like architect, engineers, MEP subs, and structural subs can pool a portion of their profit, proportionally, sharing in the gains or pains inflicted based on the project outcome.
    • Through downstream agreements, the major team players can also agree to waive certain liabilities against each other.
    • They enter into a BIM Agreement and share information freely, using BIM to facilitate target value design and a central server to allow full information transparency.
  • Partially integrating with the owner.  The owner can play an active role, participating in design and management meetings.

The extent to which the owner is integrated with the design/build team is a subtle—but crucial—point of differentiation between an extremely collaborative form of Design-Build (which I suggest we call “Integrated Design-Build”) and Integrated Project Delivery.

Here is the crux of the biscuit: Under an IPD model, the owner actually shares in the financial risks and rewards associated with meeting the budget and schedule[1].  Therefore, they are part of the team and get to fully participate in back-of-house discussions and see how the sausage is made.

Under Design-Build, even an Integrated version of Design-Build, the design-build entity is carrying all the financial risk for exceeding a Guaranteed Maximum Price (GMP) and/or schedule, so they deserve to collect all the potential reward if they can figure out how to bring it in faster and cheaper.  Since the owner’s risk for cost and schedule is substantially reduced when the project uses a GMP, the owner doesn’t really deserve a spot at the table once they’ve finished clearly communicating their design and performance criteria (which is what the scoping documents are for).

It can be an awkward thing trying to incorporate a client who wants to be involved, while making sure that client doesn’t request anything above and beyond what is strictly communicated in the scoping documents upon which the GMP is based.

So the key differences between this Integrated Design-Build and full Integrated Project Delivery are:

  • The contract model (a multi-party agreement between Owner, Architect and Contractor vs. an agreement between owner and usually the contractor)

  • The level of owner participation in the decision making process

  • The fee structure and certain waivers of liability (shared risk) between the owner and the other key project team members.

Delivery model diagrams

Figure 2: Traditional design-build is hierarchical in nature. An integrated design-build model is collaborative in nature (but only partially integrates with the owner). An IPD model is fully collaborative with the owner and may or may not include consultants and sub-contractors inside the circle of shared risk & reward, depending on the project.

The IPD contract form of agreement is aimed at changing behaviors, and its contractual structure exists to prompt, reward, and reinforce those behavior changes.  However, full scale IPD is not right for every owner or project; it is another tool in a team’s tool box.  The owner and its consultants and counsel should determine the best delivery method for the project and proceed accordingly.  The important thing to remember is that any delivery model can be adapted to be closer to the ideal collaborative model by making certain critical changes.  What is one thing you might change on your next project to prompt better collaboration?


[1] Under IPD, a Target Cost is set early (similar to a GMP).  If costs exceed that target, it comes out of the design & construction team’s profits.  But if costs go so high that the profit pool is exhausted, the owner picks up the rest of the costs.  If costs are lower than the target, the owner and the team split the savings.


Lisa Dal Gallo

Lisa Dal Gallo is a Partner at Hanson Bridgett, LLP, specializing in assisting clients in determining the best project delivery method to achieve the teams’ goals, developing creative deal structures that encourage use of collaborative and integrated delivery processes and drafting contracts in business English.  She is the founder of California Women in Design + Construction (“CWDC”), a member of the AIA Center for Integrated Practice and the AIA California Counsel IPD Steering Committee, and a LEED AP.  Lisa can be reached at 415-995-5188 or by email at ldalgallo@hansonbridgett.com.

 

 

 

Oscia Wilson headshotOscia Wilson, AIA, MBA is the founder of Boiled Architecture.  After working on complex healthcare facility projects, she became convinced that Integrated Project Delivery (IPD) was key to optimizing construction project delivery.  She founded Boiled Architecture to practice forms of Integrated and highly collaborative project delivery.  She serves on the AIA California Council’s committee on IPD.

via http://www.4Clicks.com – Premier cost estimating and efficient project delivery software ( JOC, SABER, IDIQ, MATOC, SATOC, MACC, POCA, BOA… featuring an exclusively enhanced 400,000 line RSMeans Cost database with line item modifiers and full descriptions and integrated visual estimating/QTO, contract/project/document management, and world class support and training!

Job Order Contracting – JOC – is a proven form of IPD which targets renovation, repair, sustainability, and minor new construction, while IPD targets major new construction.

IPD - Integrated Project Delivery and JOC - Job Order Contracting
IPD – Integrated Project Delivery and JOC – Job Order Contracting
JOC Process
JOC Process

BIM graphic #6

BIM is NOT 3D Visualization – 4D, 5D …..

Building Information Modeling, BIM, is the life-cycle management of the built environment supported by digital technology.  As such, the core requirements of BIM include collaboration, standardized information, multiple domain competencies, and several supporting interoperable technologies.

Let’s face it, BIM continues to languish.  Sure a lot of architects use it for pretty pictures to win business, and there are several “case studies” surrounding clash detection, etc. etc.   However, life-cycle and/or ongoing facility management using BIM?  No so much.

This is not only sad but economically and environmentally imprudent.   The efficient life-cycle management of the built environment is critical to both global competitiveness and preserving sustainable resources.

Why is BIM of to a slow start?  Too much focus on 3D visualization, too much “reinventing the wheel” trying to fit a square peg in a round hole, and virtually NO EMPHASIS upon the requirements for life-cycle management… associated competencies, domains, technologies, ongoing collaboration, integration, and continuous improvement.

Design-bid-build and “low bid” awards are the downfall of the Architecture, Engineering, Construction, Owner, and Operations sector.   The method is antagonistic, wasteful, and typically delivers poor initial and ongoing results.

Focus upon CHANGE MANAGEMENT and building awareness relative to both COLLABORATIVE CONSTRUCTION DELIVERY METHODS AND LIFECYCLE, TOTAL COST OF OWNERSHIP MANAGMENT is the only thing that will “kick start” BIM.

Integrated Project Delivery (IPD) and Job Order Contracting (JOC) are both collaborative construction delivery methods that have been proven for decades, however, awareness remains low.  IPD’s focus is upon major new construction, while JOC focuses upon the numerous renovation, repair, sustainability, and minor new construction projects so critical to efficient use of our current infrastructure.

The below diagram outlines the competencies, technologies, and process required for the lifecycle management of the built environment.

BIMF - Building Information Management Framework

via http://www.4clicks.com – Premier cost estimating and efficient project delivery technology solutions for JOC, SABER, IDIQ, SATOC, MATOC, MACC, POCA, BOS, BOS…  Featuring an exclusively enhanced 400,000+ line item RSMeans Cost database, document/contract/project management, and visual estimating / electronic quantity take-off, QTO.

Construction Disruption – BIM, Cloud Computing, and Efficient Project Delivery Methods

By Peter Cholakis
Published in the March 2013 issue of Today’s Facility Manager

Emergent disruptive technologies and construction delivery methods are altering both the culture and day-to-day practices of the construction, renovation, repair, and sustainability of the built environment. Meanwhile, a shifting economic and environmental landscape dictates significantly improved efficiencies relative to these facility related activities. This is especially important to any organization dependent upon its facilities and infrastructure to support and maintain its core mission.

The disruptive digital technologies of building information modeling (BIM) and cloud computing, combined with emergent collaborative construction delivery methods are poised to alter the status quo, ushering in increased levels of collaboration and transparency. A disruptive technology is one that alters the very fabric of a business process or way of life, displacing whatever previously stood in its place. BIM and cloud computing fit the profile of disruptive technologies, individually, and when combined these stand to create a tidal wave of change.

BIM is the life cycle management of the built environment, supported by digital technology. While a great deal of emphasis has been placed upon 3D visualization, this is just a component of BIM. The shift from a “first cost mentality” to a life cycle cost or total cost of ownership is a huge change for many. Improving decision making practices and applying standardized terms, metrics, and cost data can also prove challenging. An understanding and integration of the associated knowledge domains important to life cycle management is required, resulting in what is now being referred to as “big data.”

Cloud computing is also a disruptive technology, and it’s one that impacts several areas. The National Institute of Standards and Technology (NIST) definition of cloud computing is as follows, “Cloud computing is a model for enabling ubiquitous, convenient, on demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. The cloud model is composed of five essential characteristics, three service models, and four deployment models.”

It is perhaps helpful to define cloud computing in terms of its benefits. Cloud computing enables far greater levels of collaboration, transparency, and information access previously unavailable by traditional client/server, database, or even prior generation web applications. Multiple users can work on the same data set with anyone, anywhere, anytime, in multicurrency, multilanguage environments. All changes can be tracked to “who did what” within seconds (potentially the best form of security available), and information is never deleted.

The disruptive technologies of BIM and cloud computing will accelerate the adoption of emergent construction delivery methods and foster new frameworks. Design-bid-build, the traditional construction delivery method for decades, is inherently flawed. As a lowest bid deployment it immediately sets up adversarial relationships for involved parties. Owners prepare a solicitation for construction projects based on their understanding of them1, with or without third-party A/E assistance, and in most cases they go out in search of the lowest bidder. Then without a thorough understanding of the owner’s facility, bidders base their responses on the owner’s solicitation, plans, and specifications. Owners typically allow a period of time for bidders’ questions and clarifications; but the quality of this interchange is at best questionable if based solely on a written scope, plans and specifications, and/or a meeting with suppliers.

Design-build, arguably a step in right direction, falls short of bringing all stakeholders together. More responsibility of design and construction is shifted to the contractor and/or A/E. However, the dual level participation structure doesn’t assure the interests of all parties are equally addressed. Furthermore, the design-build process is typically reserved for major new construction projects versus the numerous sustainability, repair, renovation projects, and minor new construction projects typically encountered by facility managers (fms).

Because BIM brings together previously disparate information into a framework that enables decision support, using the technology requires a collaborative construction delivery method. The integration of the domain knowledge and robust processes required to allow fms, A/Es, and other stakeholders to achieve heightened levels of information sharing and collaboration is enabled by methods that include Integrated Project Delivery (IPD) and Job Order Contracting (JOC).

Key characteristics of these emergent construction delivery methods include: choices based on best value; some form of pricing transparency; early and ongoing information sharing among project stakeholders; appropriate distribution of risk; and some form of financial incentive to drive performance.

Both IPD and JOC allow, if not require, owner cost estimators and project managers to “partner” with contractors, subcontractors, and A/Es to conceptualize, create, cost, prioritize, start, and report upon projects—in the very early phases of construction.

IPD, JOC, and Simplified Acquisition of Base Civil Engineering Requirements (SABER)—the U.S. Air Force term for applying JOC practices—are practiced simultaneously by a growing number of organizations and supported by digital technologies. These construction delivery processes are embedded within software to allow for rapid, cost-effective, and consistent deployment as well as the associated level of collaboration and transparency.

BIM and cloud computing are disruptive technologies that will accelerate the adoption of emergent construction delivery methods such as IPD and JOC. Construction delivery methods set the tone and level of interaction among project participants and can be viewed as the management process framework. When supported by BIM and cloud computing, the life cycle management of the built environment, and the associated management of big data, can be expected to become commonplace for many construction projects.

1303 profdev a 150x150 Professional Development: Construction Disruption

Cholakis

Cholakis is chief marketing officer for 4Clicks Solutions, LLC, a Colorado Springs, CO provider of cost estimating and project management software. With expertise in facilities life cycle costs and total cost of ownership in various market segments, he is involved in numerous industry associations and committees including the American Society of Safety Engineers, Association for the Advancement of Cost Engineering, Society of American Military Engineers, BIM Library Committee-National Institute for Building Sciences (NIBS), and National Building Information Model Standard Project Committee.

1 “The Art of Thinking Outside the Box;” Vince Duobinis; 2008.

BIM Requires IPD.

BIM requires some form of Integrated Project Delivery… Period.   Why you say?

Simple.  BIM is the life-cycle management of the built environment supported by digital technology.  BIM therefore, requires the integration of multiple knowledge domains, stakeholders and supporting technologies… from strategic and capital planning, through design, construction, operations, utilization, repair, renovation, adaptation, maintenance, and deconstruction.

Efficient project delivery methods such as IPD and Job Order Contracting (JOC) are integral components of efficiently managing the built environment over time.  The help define the specialized framework needed to enable Owners, AEs, Contractors, Oversight Groups, and other Stakeholders share information and collaborate to enable the appropriate distribution of resources needed to optimize the physical and function conditions of the built environments.

BIG DATA = BIM
BIG DATA = BIM

Via http://www.4Clicks.com – Premier cost estimating and efficient project delivery software supporting IPD, JOC, SABER, IDIQ, SATOC, MACC, POCA, BOA and featuring and exclusive 400,000 line item enhancement of RSMeans cost data with modifiers and full descriptions as well as integrated visual esimating/QTO, and contract, project, and document management…. all in one application.

AGC – Job Order Contracting Webinar – March 12, 2013

Webinar:   Job Order Contracting

Tuesday, March 12, 2013 – 2:00pm to 3:30pmJOC Process

Job Order Contracting (JOC) is an innovative delivery method focused on the renovation and repair of large facility infrastructure under a long-term contract.   JOC has been around for a long time but is experiencing an upswing in an era of limited capital dollars and greater efficiency.   Like IPD, JOC focuses on relational contracting, an integrated team, and performance incentives, but JOC is unique in its unit-price structure and repetitive delivery order process.  This webinar will demystify unit pricing, coefficient development, job order scoping and estimating process, and skillsets needed to succeed in JOC. The current JOC market will be framed, with an emphasis on serving owners throughout the building life-cycle.

During this webinar, participants will learn about:

  • Compare Job Order Contracting (JOC) to other well-known delivery methods.
  • Describe the pricing structure of JOC, identify strategies for developing a coefficient, and understand the basics of line item estimating.
  • Discuss the JOC delivery order process, including scoping, proposal preparation, and execution.
  • Identify current JOC market opportunities and dynamics, including market segments, contract structure, unit price books, consultants, etc.
  • Determine skillsets and culture to be a successful JOC contractor..

Speakers

Lisa Cooley
Consultant, LEED AP

Perfecto Solis
Vice-President of Airport Development and Engineering, DFW Airport

Leo Wright
Vice-President of Job Order Contracting Division, F.H. Paschen

 

 


Any questions or changes to your registration should be made via email to meetings@agc.org.

via http://www.4Clicks.com – Premier Cost Estimating and Efficient Project Delivery Technology for JOC, SABER, IDIQ, IPD, SATOC, MATOC, POCA, BOA.

Is Cloud Computing More Important than BIM?

Is focus upon the 3D component of BIM an unfortunate distraction?

BIM, Building Information Modeling is the ability to create a dynamic information model of the built environment (above and below ground, inside and out, horizontal and vertical physical infrastructure) for use in all real property related activities:  concept,  rapid prototyping, planning, design, engineering, construction, physical and functional condition monitoring and management, financing, capital reinvestment, insurance, facility management, renovation, repair, sustainability, utilization, leasing, valuation, procurement, sale and decommissioning  with appropriate shared, secure, and collaborative information access and use.

The advent of Cloud Computing, combined with the cost to capture, store, and process information  falling to near zero,  is enabling new capabilities for secure, real-time collaboration.

The altered world landscape relative to the built environment is upon us all.  In addition to technology changes that are altering the ways we interact and conduct business on fundamental basis, there are economic and environmental imperatives.   All of which lead to the AECOO (Architecture, Engineering, Construction, Operations and Owner) sector and its stakeholdings needing to collaborate to achieve better, quicker outcome,  at less cost,  and with less risk.

Key challenges to BIM in terms of its true potential, the life-cycle management of the built environment, include:

– The development of uniform standard process, terminology, and technology environments for the new BIG DATA world , encompassing  all  ‘built environment related knowledge domains, competencies, and activities.   

– Clear organization and classifications of information and associated access  rights and rights to use, enabling appropriate, uniform basis intra and international use.

– Workflow-based  Cloud-computing services environments, and plug-ins that are vs.  monolithic traditional software frameworks which are web enabled via virtual server, or even traditional 3-tier web applications such as .NET.   4-tier applications are needed with the ability to link and reuse  information in any manner  relative  to identity/location, building, area, floor, room, occupancy, use, physical and functional conditions,  standardized and actual costs (material, equipment, and labor), et al… – to provide common ‘highly secure’  models for short and long term decision support.

– The acceptance and increased use of collaborative construction delivery methods such as Integrated Project Delivery (IPD) and Job Order Contracting (JOC).  The latter a form of IPD specifically targeting facility renovation, repair, sustainability, and minor new construction projects.

–  AUTHENTICATION, ACCESS CONTROL, COLLABORATION, AND STANDARDS …  4Clicks Solutions is about to release a powerful new Cloud Computing solution called CEASEL. It focuses upon transparent construction cost estimating and efficient project delivery.  Each user to controls their own ‘domain’ and access policies (ie ‘who’ can access ‘what’ data, ‘when’ and ‘how’ ). Data in NEVER deleted and  ALL user access and activities are tracked.. .the best form of security.    “Data independency” and  appropriate access for all asset owners, managers, and service providers is supported.   Project development time is reduced because users don’t need to create an identity store and access control system for each project, and projects, estimates, etc. can easily be updated and re-used.

New authentication methods or new kinds of user credentials can be adopted by upgrading just the authentication service.  Associated contracts,  projects, and estimates don’t need to be re-coded.  Changes to access control policy can be made quicker and more easily because it is consolidated in the one place. 

Dedicated and focused security service leads to better overall security – compared with each organization having a part-time resource for security management. 

Security improvements benefit all projects at the same time. 

Less time and effort is devoted to security administration as administrators only need to understand and use one security framework rather than a different one for each project.

Errors are reduced because there is no duplication of identity data and access control policy.A unified view of identity and access control policy is achieved for each user, without breaching the security of other users.

Simplified , auditing and reporting.

If you are interesting in being a pilot user of this new capability, please contact me directly.

 

BIM Evolution

In the long history of humankind, those who learned to collaborate and improvise most effectively have prevailed.
– Charles Darwin

BIM, the life-cycle management of the built environment supported by digital technology, requires a fundamental change in how the construction (Architects, Contractors, Engineers) and facility management (Owners, Service Providers, Building Product Manufactures, Oversight Groups, Building Users) sectors operate on a day-to-day basis.  

BIM, combined and  Cloud Computing are game changers.  They are disruptive technologies with integral business processes/practices that demand collaboration, transparency, and accurate/current information displayed via common terminology.

The traditional ad-hoc and adversarial business practices commonly associated with Construction and Facility Management are changing as we speak.    Design-bid-build and even Design-Build will rapidly go by the wayside in favor of the far more efficient processes of Integrated Project Delivery – IPD, and Job Order Contracting – JOC, and similar collaborative programs.  (JOC is a form of integrated project delivery specifically targeting facility renovation, repair, sustainability, and minor new construction).

There is no escaping the change.   Standardized data architectures (Ominclass, COBie, Uniformat, Masterformat) and cost databases (i.e. RSMeans), accesses an localized via cloud computing are even now beginning to be available.   While historically, the construction and facility management sectors have lagged their counterparts (automotive, aerospace, medical, …)  relative to technology and LEAN business practices, environmental and economic market drivers and government mandates are closing the gap.

The construction and life-cycle management of the built environment requires the integration off several knowledge domains, business “best-practices”, and technologies as portrayed below.   The efficient use of this BIG DATA is enabled by the BIM, Cloud Computing, and Integrated Project Delivery methods.

Image

The greatest challenges to these positive changes are  the CULTURE of the Construction and the Facility Management Sectors.  Also, an embedded first-cost vs. life-cycle or total cost of ownership perspective.  An the unfortunate marketing spotlight upon the technology of 3D visualization vs. BIM.   Emphasis MUST be place upon the methods of how we work on a daily basis…locally and globally  − strategic planning, capitial reinvestment planning, designing collaborating, procuring, constructing, managing and operating.  All of these business processes have different impacts upon the “facility” infrastructure and  construction supply chain, building Owners, Stakeholders, etc., yet communication terms, definitions, must be transparent and consistently applied in order to gain  greater efficiencies.

Some facility life-cycle management are already in place for the federal government facility portfolio and its only a matter of time before these are expanded and extended into all other sectors.

BIM, not 3D visualization, but true BIM or Big BIM,  and Cloud Computing will connect information from every discipline together.  It will not necessarily be a single combined model.  In fact the latter has significant drawbacks.    Each knowledge domain has independent areas of expertise and requisite process that would be diluted and marginalized if managed within one model.   That said, appropriate “roll-up” information will be available to a higher level model.   (The issue of capability and productivity marginalization can be proven by looking a ERP and IWMS systems.  Integration of best-in-class technology and business practices is always support to systems that attempt to do everything, yet do not single thing well.)

Fundamental Changes to Project Delivery for Repair, Renovation, Sustainability, and New Construction Projects MUST include:

  • Qualifications Based or Best Value Selection
  • Some form of pricing transparency and standardization
  • Early and ongoing information-sharing among project stakeholders
  • Appropriate distribution of risk
  • Some form of financial incentive to drive performance / performance-based relationships

BIM vs Information Silos

 BIM is not about software or technology but about CULTURE CHANGE and CHANGE MANAGEMENT.

BIM is about simplifying and adding visibility to the life-cycle management of the built environment.  You are either “on-board” or “not”.  It’s up to you.

BIM and FM are synonymous.  Unfortunately there are very few instances of BIM.

The biggest mistake made by most people new to BIM is to assume that BIM is all about technology, and so focus all their efforts on mastering the technology rather than considering the impact that the application of this technology will have on the processes among Owners, AEs, Contractors, Subs, Business Product and Service Providers.

IFMA BIM Lifecycle Operations Community of Practice (BIMLO COP) Kickoff Meeting Video – http://www.gosee.tv/bimlco/

BIM requirements:

  1. Organizational Commitment
  2. Collaborative, Efficient Project Delivery Methods (IPD- Integrated Project Delivery, JOC – Job Order Contracting …)
  3. Standards (OMNICLASS, COBie, IFC), Common Terms, Definitions, Metrics, Cost Data (Standardized Cost Data, example-RSMeans)
  4.  Life-cycle Information
  5.  Open digital technology supporting the above
  6.  Continuous Training and Improvement

via http://www.4Clicks.com – Premier software and services for construction cost estimating and efficient project delivery – IPD, JOC, SABER, IDIQ, SATOC, MATOC, MACC, POCA, BOA…featuring the best representation of RSMeans Cost Data, exclusively enhanced 400,000 line item database.

BIG DATA, BIM, Life-cycle Management of the Built Environment

BIM and Change Management – Sustainability and Life-cycle Management of the Built Environment

BIM (Building Information Modeling) is the life-cycle management of the built environment supported by digital technology.    3D visualization vendors have marketed BIM poorly.  Their focus has generally been upon 3D modeling and associated visual objects vs.  the collection and use of valuable and enabling INFORMATION.  Sure 3D visualization is a great tool, and a useful component of BIM, however, it’s not even the most important aspect.

Many, if not most organizations will  require significant “change management” in order to successfully implement life-cycle management / BIM. Owners, AEs, Contractors, Oversight Groups, Business Product Manufacturers,  and Software Vendors  will need to adopt a better understanding of several, currently disparate knowledge domains / competencies and technologies and work towards efficient, transparent information sharing and collaboration among all area, professionals, and stakeholders.

Cloud computing / social media, BIM, and other ‘disruptive technologies’ combined with market demands driven but altered environmental and economic global landscapes will likely help to drive change, however, timing is uncertain.

There is a serious hole in the Architectural, Engineering, Construction and Owner Sectors’ level of understanding of building performance and legacy beliefs and process simply don’t work.   – adaptation of work by Melanie Thompson of Get Sust!

Roadmap

We must  initiate a wider discussion on what constitutes an appropriate, progressive life-cycle management of the built environment.

“We are moving from the era of ‘talking about deployment’ to the era of ‘deployment’ – over the next few decades there will be billions spent on energy-efficiency retrofit projects and it is crucial for policies to be underpinned by reliable technical data and strong evidence of the benefits that can be achieved.” – Bob Lowe, Deputy Director of University College London’s Energy Institute

The effectiveness and efficiency of this deployment will  be dependent upon people asking the right questions.    Efficient project delivery methods such as Job Order Contracting – JOC, a form of Integrated Project Development – IPD, that specifically targets renovation, repair, sustainability and minor new construction will be integral to successful BIM or life-cycle management based solutions.   Collaboration and longer term relationships are primary components of JOC and equally central to BIM processes.

IPD – Integrated Project Delivery and JOC – Job Order Contracting

“… We are in a war-like situation and therefore have to accept a two-stage process: do the best we can with what we’ve got, plus keep on researching.” – Jim Skea, Chair – Sustainable Energy, Imperial College of London

Behaviors across all AECO (Architecture, Engineering, Construction, Owner) professions, building users, and oversight groups must change.  Ad-hoc, inefficient, and adversarial construction delivery methods such as Design-Bid-Build represent a serious impediment to efficient use of resources.  Additionally,  life-cycle management must be addressed on portfolio and local levels within the context specific buildings (or structures), inclusive of type, activity, and utilization. For this we need a fundamental shift in approach, applying the proven as well as yet to be developed methodologies and tools developed.

The impacts of social media and social sciences will expand exponentially.    ” Conventional building researchers are ‘positivistic’ (measuring and monitoring objects and systems) while the social scientists, who inhabit a world of case studies and qualitative data, are ‘interpretivist’.  Interpretivist research include studies of:

  • occupants and their engagement with technologies;
  • technologies and policy mechanisms in-use (implementation); and
  • changes in business models, supply chains, the distribution of risk and responsibility, professional identities, the division of labor and so on.
BIM Strategy FRAMEWORK

Job Order Contracting Process

September 2012 –  via http://www.4Clicks.com – Premier cost estimating and efficient project delivery software for JOC, Job Order Contracting, SABER, IDIQ, MATOC, SATOC, POCA, BOC, MACC ….  featuring exclusively enhanced 400,000 line item RSMeans Cost Data with modifiers and full descriptions.