Climate Change Adaptation for Built Infrastructure

Attend a presentation titled Climate Change Adaptation for Built Infrastructure.  During this presentation, Kim Magraw (US Department of Interior), Bridget Deemer (Washington State University), John Hall (US Department of Defense), and Ann Kosmal (General Services Administration) will provide the latest update on the preliminary results on research and information needs identified in the FY 2013 Agency Adaptation Plans.

The details for the meeting are as follows:

Wednesday, June 19, 2013

9:00 a.m. to 10:15 a.m.

Room 109

Keck Center of the National Academies

500 Fifth Street NW

Washington, DC

If you are planning to attend in person, please register on-line at the following website to ensure that your name is on the security guard’s sign-in sheet.

http://www8.nationalacademies.org/EventRegistration/public/Register.aspx?event=9785CA5B

For those that will not attend in person, you can view the presentation via WebEx; please register on-line at the following website:

http://sgiz.mobi/s3/4fa1bf9badb3

Above is from the Federal Facilities Council and shared via 4Clicks.com – leading provider of cost estimating and efficient project delivery software and services for JOC – Job Order Contracting, SABER, IDIQ, MATOC, SATOC, MACC, POCA, BOA, BOS and more.  Featuring an exclusively enhanced 400,000+ RSMeans unit price cost database and integrated contract, project, and document management, as well as visual estimating and electronic quantify takeoff (QTO).

BIM Evolution

In the long history of humankind, those who learned to collaborate and improvise most effectively have prevailed.
– Charles Darwin

BIM, the life-cycle management of the built environment supported by digital technology, requires a fundamental change in how the construction (Architects, Contractors, Engineers) and facility management (Owners, Service Providers, Building Product Manufactures, Oversight Groups, Building Users) sectors operate on a day-to-day basis.  

BIM, combined and  Cloud Computing are game changers.  They are disruptive technologies with integral business processes/practices that demand collaboration, transparency, and accurate/current information displayed via common terminology.

The traditional ad-hoc and adversarial business practices commonly associated with Construction and Facility Management are changing as we speak.    Design-bid-build and even Design-Build will rapidly go by the wayside in favor of the far more efficient processes of Integrated Project Delivery – IPD, and Job Order Contracting – JOC, and similar collaborative programs.  (JOC is a form of integrated project delivery specifically targeting facility renovation, repair, sustainability, and minor new construction).

There is no escaping the change.   Standardized data architectures (Ominclass, COBie, Uniformat, Masterformat) and cost databases (i.e. RSMeans), accesses an localized via cloud computing are even now beginning to be available.   While historically, the construction and facility management sectors have lagged their counterparts (automotive, aerospace, medical, …)  relative to technology and LEAN business practices, environmental and economic market drivers and government mandates are closing the gap.

The construction and life-cycle management of the built environment requires the integration off several knowledge domains, business “best-practices”, and technologies as portrayed below.   The efficient use of this BIG DATA is enabled by the BIM, Cloud Computing, and Integrated Project Delivery methods.

Image

The greatest challenges to these positive changes are  the CULTURE of the Construction and the Facility Management Sectors.  Also, an embedded first-cost vs. life-cycle or total cost of ownership perspective.  An the unfortunate marketing spotlight upon the technology of 3D visualization vs. BIM.   Emphasis MUST be place upon the methods of how we work on a daily basis…locally and globally  − strategic planning, capitial reinvestment planning, designing collaborating, procuring, constructing, managing and operating.  All of these business processes have different impacts upon the “facility” infrastructure and  construction supply chain, building Owners, Stakeholders, etc., yet communication terms, definitions, must be transparent and consistently applied in order to gain  greater efficiencies.

Some facility life-cycle management are already in place for the federal government facility portfolio and its only a matter of time before these are expanded and extended into all other sectors.

BIM, not 3D visualization, but true BIM or Big BIM,  and Cloud Computing will connect information from every discipline together.  It will not necessarily be a single combined model.  In fact the latter has significant drawbacks.    Each knowledge domain has independent areas of expertise and requisite process that would be diluted and marginalized if managed within one model.   That said, appropriate “roll-up” information will be available to a higher level model.   (The issue of capability and productivity marginalization can be proven by looking a ERP and IWMS systems.  Integration of best-in-class technology and business practices is always support to systems that attempt to do everything, yet do not single thing well.)

Fundamental Changes to Project Delivery for Repair, Renovation, Sustainability, and New Construction Projects MUST include:

  • Qualifications Based or Best Value Selection
  • Some form of pricing transparency and standardization
  • Early and ongoing information-sharing among project stakeholders
  • Appropriate distribution of risk
  • Some form of financial incentive to drive performance / performance-based relationships

The Reasons BIM is Going Nowhere Fast

July 16th, 2012 – NIBS Report –  National Institute of Building Sciences Consultative Council  

Per the NIBS  Consultative Council there are four areas where our industry needs to focus highlights four  in order to improve buildings and infrastructure.

  1. Defining High-Performance and Common Metrics
  2. Codes and Standards Adoption and Enforcement
  3. Energy and Water Efficiency; and
  4. Sustainability.

The Consultative Council provides findings and recommendations to the President and Congress on issues impacting the built environment. A summary of the report, “Moving Forward: Findings and Recommendations from the Consultative Council,” is in the Institute’s 2011 Annual Report to the President of the United States.

  • The building community should work to define metrics for achieving high-performance buildings—including both qualitative and quantitative measures.
  • The National Institute of Standards and Technology, the U.S. Department of Energy, the Institute and others should encourage cities and smaller communities to adopt and enforce updated model codes.
  • Regulators and the building industry should support efforts by codes and standards developers and adopting jurisdictions to format criteria in ways that simplifies and enhances the ability to verify compliance.
  • Software developers, regulators and building professionals should support the development of building information modeling (BIM ) for use as an automated code-checking tool that can improve compliance and streamline the approval process.
  • The U.S. Government should develop incentives for state and local governments to require water metering of all buildings and to adopt and enforce comprehensive “green” building or plumbing codes.
  • The U.S. Government should provide a tax incentive for building owners who voluntarily get their buildings audited and that implement the recommendations to reduce energy and water use.
  • Policy makers and members of the building community are encouraged to use a common definition for sustainability.
  • The building community needs mechanisms (e.g., budgets, insurance and tax incentives) to help finance sustainable life-cycle performance for buildings and related infrastructure.

There is virtually nothing “new” in any of the above, nor any plan to gain traction in any particular area, let alone all.  Until our industry and our Nation realizes the importance of efficiently managing the life-cycle of the built environment and defines processes and deploys digital tools to support requisite changes, BIM doesn’t have a chance.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

via http://www.4Clicks.com – Premier software for cost estimating and efficient project delivery – Job Order Contracting – JOC, SABER, IDIQ, MATOC, SATOC, MACC, POCA, BOA, etc.  Exclusive 400,000+ line item enhancement of RSMeans Cost Data, visual estimating including QTO and Pattern Search, Document/Project/Program Management.

 

Consultative Council members that contributed to the 2011 report include: ASTM International; American Institute of Architects; American Society of Civil Engineers; ASHRAE; Associated General Contractors of America; Building Owners and Managers Association, International; Construction Specifications Institute; ESCO Group; Extruded Polystyrene Foam Association; Glass Association of North America; Green Mechanical Council; HOK; Illuminating Engineering Society; International Association of Lighting Designers; International Association of Plumbing and Mechanical Officials; International Code Council; Laborers’ International Union of North America; National Insulation Association; NORC at the University of Chicago, and United Association of Journeymen and Apprentices of the Plumbing and Pipefitting Industry.

” Evidence-based ” Life-cycle Federal Facility Management, BIM, and the Status Quo – NIBS, FFC

Yesterday (6/19/2012), the National Academies Federal Facility Council hosted a timely, and potentially watermark event “Predicting Outcomes of Investments in Maintenance and Repair of Federal Facilities“.

It is my hope that this event and those similar to it  be expanded as much as possible to assist all real property owners, architects, contractors, subcontractors, building product manufactures, oversight groups, and the community truly practice facility life-cycle management, referred to more recently as BIM (building information modeling / management).

Key Topics / Take Aways:

Identify and advance technologies, processes, and management practices that improve the performance of federal facilities over their entire life-cycle, from planning to disposal.

Predicting Outcomes of Investments in Maintenance and Repair for Federal Facilities
-Facility risks to Organizational Mission
-Potential to quantify
-Ability to predict outcomes vs. investment
-Communication strategies
-The “how” of measuring investment successes

1. You can’t manage what you don’t measure.

2. Requirements for facility life-cycle management, efficient repair/maintenance/sustainability, BIM

3. Inventory of Built Environment

4. Physical and Functional Condition of Assets (Portfolio, Site, Building/Area, System, Sub-system, Component Levels)

5. Expected Life-cycle and Deterioration Rates for Physical Assets

6. Ranking of Facilities/Built Environment relative to Organizational Mission

Mission Criticality / Risk Matrix

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. Associated Capital Reinvestment Requirements and Ability to run multi-year “What-if ” scenario analyses

8. Collaborative, Efficient Project Delivery Methods ( IPD – Integrated Project Delivery, JOC – Job Order Contracting)

 

Strategic approaches for investing in facilities maintenance and repair to achieve beneficial outcomes and to mitigate risks. Such approaches should do the following:

• Identify and prioritize the outcomes to be achieved through maintenance and repair investments and link those outcomes to achievement of agencies’ missions and other public policy objectives.
• Provide a systematic approach to performance measurement, analysis, and feedback.
• Provide for greater transparency and credibility in budget development, decision making, and budget execution.

• Identify and prioritize the beneficial outcomes that are to be achieved through maintenance and repair investments, preferably in the form of a 5- to 10-year plan agreed on by all levels of the organization.
• Establish a risk-based process for prioritizing annual maintenance and repair activities in the field and at the headquarters level.
• Establish standard methods for gathering and updating data to provide credible, empirical information for decision support, to measure outcomes from investments in maintenance and repair, and to track and improve the results.

Vehicles for Change—
• Portfolio-based facilities management (aka asset management)
•Technology (tools, knowledge, risk)
• Recognition of impacts of facilities on people, environment, mission (i.e., prioritizing)
• Changing of the Guard

Best Practices … Partial Listing
• Identification of better performing contractors or service providers
• GIS mapping tools
• Facility condition assessments – surveys, vendors, frequencies, costs
• Maintenance management systems
• Predictive maintenance tools
• Organizational structures
• Budget call process
• Master Planning processes
• Improve relationships with the facility end users and foster a “One Community”
• Energy management

Presentations:

Doug Ellsworth_USACE

DR_Uzarski_CERL

John Yates_DOE

Get Moy_Portfolio Mgmt

Peter Marshall_FFC_Chair

Terms:

Component-section (a.k.a. section): The basic “management unit.” Buildings are a collection of components grouped into systems. Sections define the component by material or equipment type and age.
Condition Survey Inspection (a.k.a. Condition Survey; Inspection): The gathering of data for a given component-section for the primary purpose of condition assessment.
Condition Assessment: The analysis of condition survey inspection data.
Component Section Condition Index (CSCI): An engineering – based condition assessment outcome metric (0 – 100 scale) and part of the Building Condition Index (BCI) series.

Condition Survey Inspection Objectives
1. Determine Condition (i.e. CSCI) of Component-Section
2. Determine Roll-Up Condition of System, Building, etc.
3. Provide a Condition History
4. Compute Deterioration Rates
5. Calibrate/Re-calibrate Condition Prediction Model Curves
6. Compute/Re-compute Remaining Maintenance Life
7. Determine Broad Scope of Work for Planning Purposes
8. Quantify/refine Work Needs (incl root cause analysis, if needed)
9. Establish when Cost Effective to Replace (vs. Repair)
10. Compute/Re-compute Remaining Service Life
11. QC/QA (Post-work Assessment)

Condition Survey Inspection Types
Deficiency: The “traditional” inspection discussed previously.
Distress Survey: The identification of distress types (i.e. crack, damage, etc.), severity (low, medium, high) and density (percentage) present. Data directly used in the calculation of the CSCI. No estimate of cost or priority.
Distress Survey with Quantities: Same as distress survey except that distress quantities are measured or counted. The resulting density is more accurate than a distress survey, thus the CSCI is more precise.
Direct Rating: A one-step process that combines inspection and condition assessment. An alphanumeric rating (three categories, three subcategories each) is assigned to the component-section by the inspector. Rating is directly correlated to a CSCI value, but is less accurate than a CSCI derived from a distress survey. Quick, but no record of what’s wrong.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

About The Federal Facilities Council

The Federal Facilities Council (FFC) was established at the National Academies in 1953 as the Federal Construction Council. The mission of the FFC is to identify and advance technologies, processes, and management practices that improve the performance of federal facilities over their life-cycles, from programming to disposal. The FFC is sponsored and funded by more than 20 federal agencies with responsibilities for and mutual issues related to all aspects of facilities design, construction, operations, renewal, and management.

The FFC fulfills its mission by networking and by sharing information among its sponsoring federal agencies and by leveraging its resources to conduct policy and technical studies, conferences, forums, and workshops on topics of mutual interest. The activities to be undertaken in any given calendar year are approved by a committee composed of senior representatives from each of the sponsor agencies.

Much of the work of the FFC is carried out by its 5 standing committees, each of which meets quarterly. The majority of meetings include presentations by guest speakers from the federal community, academia, and the private sector and these presentations are open to the public. The presentation slides are posted on the Events page of this website. If you would like to automatically receive notices of new reports or upcoming events, please subscribe to the FFC listserv.
Within the National Academies, the FFC operates under the auspices of the Board on Infrastructure and the Constructed Environment (BICE) of the National Research Council. The BICE provides oversight and guidance for FFC activities and serves as a link between the sponsoring federal agencies and other elements of the building community, both national and international.

via http://www.4Clicks.com – Premier software for efficient construction project delivery – renovation, repair, sustainability – JOC, SABER, IDIQ, SATOC, IPD, MATOC, MACC, POCA, BOA …

Sustainable Grounds / Landscapes

State universities continue to make strong efforts to bring sustainability to their campuses through capital and curriculum related projects. However, these efforts have not yet been paired with strategies for improving the sustainability of the landscape.

Framingham State University, an institution noted for its commitment to reducing its carbon footprint, has begun to move in this direction: in January 2012, FSU contracted Land People Habitat LLC to develop a Sustainable Grounds Development Plan for the campus landscape.

Sustainable Grounds / Landscapes

This document contains the work completed under this contract, and explores the existing conditions of the landscape and the needs and desires of the community in order to propose design and maintenance schemes that will close the loop of sustainability at the university.

BIM and The Role of a Construction Cost Estimator

Professional construction cost estimators are critical to any collaborative, transparent, and productive  BIM solution.   BIM, facilities life-cycle management supported by digital technology will create a high demand cost estimators with a thorough understanding of building systems and associated repair, renovation, sustainability and construction techniques, materials, equipment, and labor.   Experienced cost estimators who appropriately leverage technology and embrace collaboration will excel.  Navigating the current AEC sector-wide paradigm shift from antagonistic ad-hoc processes such as design-bid-build, excessive change-orders, and even modest attempts at improvement such as design-build, to collaborative, efficient project delivery methods such as integrated project delivery – IPD, and job order contracting – JOC will be a challenge for some, but a willing change for most.

A team approach, support by technologies such as domain-specific cloud-computing solutions (cost estimating, capital planning, maintenance/repair, …)  integrated with 3D visualization tools..aka Revit will become commonplace.  Owners, AEs, Contractors, Sub-Contractors, Oversight Groups, Business Product Manufacturers- BPMs, and the Community will all gain higher visibility into life-cycle needs and impacts of the built environment.

All who collaborate openly to exceed client’s expectations, and produce efficient, quality construction, renovation, repair, and sustainability on-time, and on-budget will thrive, while non-participants will fall by the wayside.

The AECOO’s (architecture, engineering, construction, owner, operations) legacy of fragmented, unproductive approaches,  ad hoc practices, and associated lack of trust will crumble, to be replaced by OPEN, transparent, and collaborative PROCESSES supported by robust technology.

\

BIM Construction Cost Estimating – Top Ten List

First and foremost BIM is the life-cycle management of the built environment supported by digital technology.  While the industry is currently fixated upon 3D visualization tools, aka Revit, Archicad, Bentely… they only represent components of a BIM solution.

Construction cost estimating, and facility life-cycle cost estimating are critical components of any facility design, project delivery, repair, renovation, sustainability, or planning function.

Here’s a list of BIM Construction Cost Estimating Requirements:

1.  Collaboration – involvement of all stakeholders – Owners, AE’s, Contractors, Oversight Groups, Community …

2. Transparency – Appropriate access to cost information, and associated comparison to published independent third-party costs such as RSMeans Cost Data.

3. Consistent Format and Terminology – Use of a standard set of terms and data architectures such as Uniformat, Masterformat, Omniclass.

4. Metrics and Benchmarks – Time, Accuracy, Cost

5. Proper allowances for local conditions – geographic, weather, productivity of labor, …

6. Appropriate level of technology to assure productivity, collaboration, security, audit trail.

7. Robust Process – The application of a robust process and business “best-practices” with a focus upon continuous improvement.

8. Appropriate knowledge of all “levels” of construction cost estimating and their potential accuracy – Square Foot / Conceptual / Building Level Construction Cost Estimating, Assembly / System Level Construction Cost Estimating, Unit Line Item Construction Cost Estimating.

9. Knowledge of the impact of the Construction Cost Delivery Method upon construction costs and life-cycle costs – Design-Bid-Build, CM@Risk, Design-Build, Job Order Contracting, Integrated Project Delivery

10. Fundamental understanding of Total Cost of Ownership and Facility Life-cycle Management – Physical and functional conditions, Operations, Sustainability, Renovation, Repair, Efficient Project Delivery Methods ( IPD-Integrated Project Delivey, JOC – Job Order Contracting )

Metrics for BIM – Total Cost of Ownership and Facility Life-cycle Management

BIM Metrics

If you think the value of BIM is in pretty 3D pictures, don’t both to read the attached article…   there is too much for you to learn.    Remember…  “you can’t manage what you don’t measure.”

Metrics/Cost Models

􀀹 FCI (Facility Condition Index) = DM (Deferred Maintenance) + CR (Capital Renewal)/
CRV (Current Replacement Value)
􀀹 AI (Adaptive Index) or PI (Programmatic Index) = PR (Program Requirements)/
CRV (Current Replacement Value)
􀀹 FQI (Facility Quality Index) or Quality Index or Index = FCI (Facility Condition Index)+ AI (Adaptive Index)
􀀹 Annualized Total Cost of Ownership (TCO) per building per gross area = Rate per square foot
􀀹 Annualized TCO per building/Current replacement value = Percent of Current Replacement Value (CRV)
􀀹 Annualized TCO per building/Net assignable square feet = Cost rate per net assignable square
feet per building
􀀹 Annualized TCO per building/Non-assignable square feet = Cost rate per non-assignable square
feet per building
􀀹 Annualized TCO per building/Building Interior square feet = Cost rate per interior square foot per
building
􀀹 Total Cost (inclusive of construction, design, project management, etc.)/square foot vs. Regionalized
Applicable Standard Reference Cost, Percent Variance
􀀹 AI (Adaptation Index) or PI (Programmatic Index) = PR (Program Requirements)/
CRV (Current Replacement Value)
􀀹 Uptime or Downtime – Defined in percent, as amount of time asset is suitable for the program(s)
served.
􀀹 Facility Operating Gross Square Foot (GSF) Index (SAM Performance Indicator: APPA 2003)
􀀹 Custodial Costs per square foot
􀀹 Grounds Keeping Costs per square foot
􀀹 Energy Costs per square foot
􀀹 Energy Usage
􀀹 Utility Costs per square foot
􀀹 Waste Removal Costs per square foot
􀀹 Facility Operating Current Replacement Value (CRV) Index (SAM Performance Indicator: APPA 2003)
􀀹 Churn Rate
􀀹 Utilization Rate
􀀹 Planned/Preventive Maintenance Costs per square foot
􀀹 Emergency Maintenance Costs as a percentage of Annual Operations Expenditures.
􀀹 Unscheduled/Unplanned Maintenance Costs as a percentage of Annual Operations Expenditures.
􀀹 Repair costs (man hours and materials) as a percentage of Annual Operations Expenditures
􀀹 FCI (Facility Condition Index) = DM (Deferred Maintenance) + CR (Capital Renewal)/
CRV (Current Replacement Value)
􀀹 Recapitalization Rate, Reinvestment Rate
􀀹 Deferred Maintenance Backlog
􀀹 Facilities Deterioration Rate

LEED Abandoned by DOD?

In the recent past, all new DOD construction projects were required to meet the LEED Silver or an equivalent standard and/or to comply with the five principles of High Performance Sustainable Buildings. This year a new construction code for high-performance, sustainable buildings, is expected that will govern all new construction, major renovations and leased space acquisition. This new code, based heavily on ASHRAE 189.1, will accelerate DoD’s move toward efficient, sustainable facilities that cost less to own and operate, leave a smaller environmental footprint and improve employee productivity.

Testimony by  Dr. Dorothy Robyn Deputy Under Secretary of Defense (Installations and Environment) before the House Appropriations Committee Subcommittee on Military Construction, Veterans Affairs and Related Agencies on March 7, 2012 to present the President’s Fiscal Year (FY) 2013 budget request for the Department of Defense programs to support installations, facility energy and the
environment covered four topics:

international and domestic basing, including the Department’s request for authorization of two new rounds of Base Realignment and Closure;

management of the built environment, including the programs that support military construction,
family housing,  sustainment and recapitalization;

strategy for managing facility energy to reduce costs and improve installation energy security;

and  management of the natural environment, including the programs that support environmental conservation and restoration, environmental technology and compatible development.

Relative to LEED it is important to note that  Congress has established a requirement to report  the return on investment from using consensus standards such as ASHRAE 189.1.  This is important to note as with more than 300,000 buildings and 2.2 billion square feet of building space, the DoD has a physical infrastructure footprint three times that of Wal-Mart and six times that of GSA.  The DOD’s  energy bill is approximately $4 billion annually—roughly 10 percent of what DoD spends to maintain its installation infrastructure ($40 billion).  Additionally facility energy represents nearly 40 percent of DOD greenhouse gas emissions.

Full Testimony

via http://www.4Clicks.com – Premier software for efficient cost estimating and efficient construction project delivery – JOC, SABER, SATOC, IPD, IDIQ, MATOC, MACC, POCA, BOA.  Featuring exclusive 400,000 line item representation of RSMeans Cost Data, visual estimating, contract management, and document management…all in one application.

A Step Closer to BIM? NIBS and AIA Working toward Centralized Building Information Resource

Let’s face it,  the virtually singularly low rate of productivity of the AECOO (architecture, engineering, construction, operations, owner) sector for the past several decades is due to our CULTURE.

As a group, we are kings of the “not invented here” syndrome… or the “my way is the better way” syndrome.  Also, the “let’s keep the Owner in the dark” or the “let’s not work together”, and the “bid low and make it up in change orders” , or “let’s accept the lowest bid and hope for the best” approaches to ruin.

As I’ve previously noted, the altered world economic and environmental landscapes will force CULTURAL change in our industry.  Architects, Engineers, and Contractors new motto will be “our best customer is a smart customer”.  Why?  It’s simple, collaboration and improved “cradle to cradle” facility life-cycle management approaches will be required for survival.  Furthermore, cloud computing and proven collaborative construction delivery methods such as Integrated Project Delivery (IPD) and “IPD-lite”, also known as Job Order Contracting, the latter for facility repair, renovation, sustainability and minor new construction, will converge to enable knowledge sharing among all facility stakeholders.

The signing of an agreement between The American Institute of Architects and the
National Institute of Building Sciences to Work Together on Promoting Building Industry Research and Knowledge
is just one indication of the our “changing AECOO landscape”.  It demonstrates the two organizations’ mutual interest in the design, construction, operations and maintenance of high-performance buildings and the desire… no better yet the recognized NEED TO COLLABORATE on issues surrounding these topics.

A primary initial goal of the “partnership” is the joint development of an on-line portal for building industry research and knowledge.   It’s amazing how many in our industry are not even aware of NIBS or Smart Building Alliance.  The march toward BIM, and recognizing its true potential as “efficient building life-cycle management support by technology and standardized processes, taxonomy, etc.” vs. “pretty 3D pictures” will know hopefully gain traction and momentum.

Building Information Management Framework - BIMF

via http://www.4Clicks.com – premier software for cost estimating and efficient project delivery – JOC, SABER, IPD, SATOC, MATOC, IDIQ, POCA, MACC, BOA ….