Hyperconverged Facility Management

BIM was going to change the world and finally make life-cycle management of the built environment commonplace.

It just didn’t happen.

The cultural barriers in the AECOO sector (Architecture, Engineering, Construction, Operations, Owner) proved too strong.  More specifically, the lack of education, awareness, and capability on the part all players, but especially Owners, with respect to total cost of ownership and LEAN management best-practices easily held BIM at bay.

As a result BIM remains stagnated in the U.S., the U.K., and “virtually” everywhere when is comes to the implementation of LEAN collaborative construction delivery methods.

Until the AECOO sector focuses upon life-cycle strategies, collaborative construction delivery methods, clear-common-and-concise terms, definitions, and key performance indicators… to name a few, little will change.  The AECOO sector lags virtually every other, when it comes to capability, professionalism, leverage of technology, and productivity.

Will it change in our life-time?  Hopefully.  Hyperconvergence combines the economic and environmental benefits of life-cycle costing, LEAN best-management practices, collaborative construction delivery (IPD-Integrated Project Delivery, JOC-Job Order Contracting), virtualization, and cloud computing.

http://www.jobordercontracting.org

job order contracting

 

Job Order Contracting – JOC, Training, & Motivation

Job Order Contracting – JOC – delivers greater numbers of quality projects, on-time and on-budget projects, as well as higher overall satisfaction levels than  “traditional” construction delivery methods such as design bid build, design build, CM@R, etc.   For this reason, the top 5% of Owners and Contractors depend upon JOC for horizontal and vertical renovation, repair, and minor new construction.

However, not all Owners and Contractors are ready for job order contracting. JOC requires higher levels of transparency, collaboration, motivation, and training than less productive traditional construction delivery methods.  It also requires shared/risk reward and common terms, definitions, and data architectures.  Many of these characteristics are foreign to Owners and Contractors sole experienced with arcahic and unproductive processes and outcomes associated  with low-bid procurement and dependent upon excessive change orders to complete construction projects.

Leadership and training versus excessive management and control are common with job order contracting.   In fact, on going training and continuous improvement are requirements for all LEAN construction delivery methods (job order contracting – JOC, integrated project delivery-IPD, etc.)

Studies have demonstrated that ongoing training and the selection of the construction delivery method are directly linked to motivation, as well as overall outcomes.  For example the below chart clearly demonstrates that more frequent training leads to higher levels of motivation (2016, Moriarty, T.)

job order contracting

Similarly the benefits of Job Order Contracting are are shown below.   Again, however, these benefits can only be recognized through the implement of LEAN best management practices and continuous support, monitoring, and ongoing training.
JOC - DB - DBB
(2015, Job Order Contracting – Performance Study – ASU / PBRSG)

 

CASE STUDY – Job Order Contracting – US Army Corps of Engineers

Download Case Study PDF

Overview – The United States Army Corps of Engineers (USACE) was approached to establish a Job Order Contracting (JOC) program to assist in construction projects associated with ongoing Sustainment, Restoration, and Modernization (SRM) work. As a result, USACE awarded a JOC to an 8(a) Contractor.
Problem/Need – Approximately eighty (80) potential JOC projects were identified subsequently narrowed done to forty two (42). The problem was clear: How could the USACE estimate, negotiate, and award all of these projects, valued at approximately $3.96 million in work, before the close out of the fiscal year?

The JOC process is a high performance delivery system for facility SRM work. The process is more efficient and timely than conventional construction and acquisition methods.
To increase the level of the District’s JOC performance and teamwork, the JOC program must have a dedicated Project Delivery Team (PDT), clear lines of communication, and provide adequate training to personnel involved.
A seasoned JOC contractor coupled with efficient and effective JOC delivery process and PDT will provide complete customer satisfaction, quality construction, and timely execution.
via http://www.4Clicks.com – premier cost estimating and efficient project delivery software and services.

BIM Strategy, Collaboration, and Interoperablity… Getting it right from square one.

The construction industry (architecture, engineering, construction, operations/facility management, business product manufacturers, oversight and regulatory groups), like most other sectors, is in a state of rapid change.

Construction delivery methods are at the center of  this ongoing transformation as they dictate the structure, tone, and legal requirements of any project.  Thus, whether you are involved with construction, renovation, repair, and/or sustainability projects… Integrated Project Delivery – IPD, for new construction, Job Order Contracting – JOC, for minor new construction, renovation, repair, and sustainability and Public Private Partnerships – PPP, are examples of collaborative construction delivery methods that are rapidly replacing traditional and somewhat dysfunctional methods such as Design Bid Build (DBB).

While collaborative construction delivery methods have been in existence for decades and are well proven, they are only recently being more readily adopted.  The drivers for change include environmental, economic, and technology factors.  We are all aware of shrinking resources whether budgetary or non-renewal energy related, as well as associated environmental regulations relative to global warming, the latter of which will become increasingly stringent.     That said, disruptive technologies such as BIM (Building Information Modeling) and Cloud Computing are also a major causal factors  as well as enablers  relative the  business process change so desperately needed with the construction sector.
As collaborative construction delivery methods become more common, the need to share information transparently becomes paramount. Project teams need to adapt to early and ongoing information sharing among distributed team members and organizations.   In the case of JOC (also known as SABER in in the United State Air Force), technology has been available for over a decade to support virtually all aspects of   collaborative project execution from concept thru warranty period.  An example is 4Clicks Project Estimator combined with RSMeans Cost Data, and/or organizational specific unit price books.  With all parties leveraging the same data and following robust, collaborative processes from concept, thru site walk, construction, etc., the net result being  more jobs being done on-time and on-budge with fewer change orders and virtual elimination of the legal disputes, the latter be unfortunately common with traditional methods.

Job Order Contracting Process
Job Order Contracting Process

IPD vs. Traditional

How built environment stakeholders share information and work together will continue to evolve.  The methods in which we, as Owners, Contractors, AEs, etc. participate in this exchange within our domains will determine our ultimate success or failure.

As show in the following graphic, the project delivery methods, while a fundamental element, is just one “piece of the BIM pie”.

Multiple “activities” , business processes” , “competencies”, and “supporting technologies” are involved in BIM.

BIM is  “the life-cycle management of the built environment supported by digital technologies”.

BIM Framework
BIM Framework

BIM Technology Road Map

facility-life-cycle-technology-and-process-roadmap1-300x172It’s the integration of Cloud Computing, BIM, and Efficient Collaborative Construction Delivery Methods (IPD, JOC, PPP…) that will improve productivity in the AECO sector.

Project Delivery Methods of the Future

via http://www.4Clicks.com – Leading cost estimating and efficient project delivery software solutions for JOC, SABER, IDIQ, MATOC, SATOC, MACC, POCA, BOA, BOS … featuring and exclusively enhanced 400,000 line item RSMeans Cost Database, visual estimating / automatic quantity take off ( QTO), contract, project, and document management, all in one application.

BIM is NOT 3D Visualization – 4D, 5D …..

Building Information Modeling, BIM, is the life-cycle management of the built environment supported by digital technology.  As such, the core requirements of BIM include collaboration, standardized information, multiple domain competencies, and several supporting interoperable technologies.

Let’s face it, BIM continues to languish.  Sure a lot of architects use it for pretty pictures to win business, and there are several “case studies” surrounding clash detection, etc. etc.   However, life-cycle and/or ongoing facility management using BIM?  No so much.

This is not only sad but economically and environmentally imprudent.   The efficient life-cycle management of the built environment is critical to both global competitiveness and preserving sustainable resources.

Why is BIM of to a slow start?  Too much focus on 3D visualization, too much “reinventing the wheel” trying to fit a square peg in a round hole, and virtually NO EMPHASIS upon the requirements for life-cycle management… associated competencies, domains, technologies, ongoing collaboration, integration, and continuous improvement.

Design-bid-build and “low bid” awards are the downfall of the Architecture, Engineering, Construction, Owner, and Operations sector.   The method is antagonistic, wasteful, and typically delivers poor initial and ongoing results.

Focus upon CHANGE MANAGEMENT and building awareness relative to both COLLABORATIVE CONSTRUCTION DELIVERY METHODS AND LIFECYCLE, TOTAL COST OF OWNERSHIP MANAGMENT is the only thing that will “kick start” BIM.

Integrated Project Delivery (IPD) and Job Order Contracting (JOC) are both collaborative construction delivery methods that have been proven for decades, however, awareness remains low.  IPD’s focus is upon major new construction, while JOC focuses upon the numerous renovation, repair, sustainability, and minor new construction projects so critical to efficient use of our current infrastructure.

The below diagram outlines the competencies, technologies, and process required for the lifecycle management of the built environment.

BIMF - Building Information Management Framework

via http://www.4clicks.com – Premier cost estimating and efficient project delivery technology solutions for JOC, SABER, IDIQ, SATOC, MATOC, MACC, POCA, BOS, BOS…  Featuring an exclusively enhanced 400,000+ line item RSMeans Cost database, document/contract/project management, and visual estimating / electronic quantity take-off, QTO.

The “I” for Information if Building Information Modeling or Life-cycle Facility Management

While articles and discussions continue about Facility Management and BIM, in reality they are virtual synonyms.

Facility management is a profession that encompasses multiple disciplines to ensure functionality of the built environment by integrating people, place, process and technology. – Definition of Facility Management – IFMA

Building Information Modeling (BIM) is a digital representation of physical and functional characteristics of a facility.  A BIM is a shared knowledge resource for information about a facility forming a reliable basis for decisions during its life-cycle; defined as existing from earliest conception to demolition. – NIBS

In order to achieve either efficiently I argue that Information and Process must be shared in a consistent, mutually understood format among all stakeholders of the built environment: Owners, AEs, Contractors, Sub-contractors, Business Product Manufacturers, Building Users, and Oversight Groups.

The problem remains, however, that many don’t understand the multiple knowledge domains or competencies associated with the life-cycle management of the built environment, nor how to integrated them.  What is even worse, is that some of those that do understand are unwilling to share that information due to perceived issues with doing so.

NBIMS and similar efforts are steps in the right direction.  NBIMS attempts to consolidate and communicate information requirements, models, and associated usage processes, with an “open industry” approach.

Owners must clearly push for BIM and Life-cycle Facility Management.  Why?  Simple…they pay the bills and it is in their best interests to optimize their return on investment (ROI).  That said, Owners can’t do it alone.  By the very nature of the industry, all stakeholders must collaborate.  Unlike an airplane, or car… buildings are around for 50-100 years, have multiple uses, and can be adapted to changing situations.. also a far greater number of suppliers and service providers are involved, as well as a virtually infinite number of configurations.

 

Here’s are quick graphic of just a few of the areas, competencies, and technologies involved:

BIMF - Building Information Management Framework

 

via http://www.4Clicks.com – Premier cost estimating and efficient project delivery software featuring an exclusively enhanced 400,000+ RSMeans Cost database and support for JOC, SABER, IDIQ, SATOC, MATOC, MACC, POCA, BOA, BOS, and more!

Construction Disruption – BIM, Cloud Computing, and Efficient Project Delivery Methods

By Peter Cholakis
Published in the March 2013 issue of Today’s Facility Manager

Emergent disruptive technologies and construction delivery methods are altering both the culture and day-to-day practices of the construction, renovation, repair, and sustainability of the built environment. Meanwhile, a shifting economic and environmental landscape dictates significantly improved efficiencies relative to these facility related activities. This is especially important to any organization dependent upon its facilities and infrastructure to support and maintain its core mission.

The disruptive digital technologies of building information modeling (BIM) and cloud computing, combined with emergent collaborative construction delivery methods are poised to alter the status quo, ushering in increased levels of collaboration and transparency. A disruptive technology is one that alters the very fabric of a business process or way of life, displacing whatever previously stood in its place. BIM and cloud computing fit the profile of disruptive technologies, individually, and when combined these stand to create a tidal wave of change.

BIM is the life cycle management of the built environment, supported by digital technology. While a great deal of emphasis has been placed upon 3D visualization, this is just a component of BIM. The shift from a “first cost mentality” to a life cycle cost or total cost of ownership is a huge change for many. Improving decision making practices and applying standardized terms, metrics, and cost data can also prove challenging. An understanding and integration of the associated knowledge domains important to life cycle management is required, resulting in what is now being referred to as “big data.”

Cloud computing is also a disruptive technology, and it’s one that impacts several areas. The National Institute of Standards and Technology (NIST) definition of cloud computing is as follows, “Cloud computing is a model for enabling ubiquitous, convenient, on demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. The cloud model is composed of five essential characteristics, three service models, and four deployment models.”

It is perhaps helpful to define cloud computing in terms of its benefits. Cloud computing enables far greater levels of collaboration, transparency, and information access previously unavailable by traditional client/server, database, or even prior generation web applications. Multiple users can work on the same data set with anyone, anywhere, anytime, in multicurrency, multilanguage environments. All changes can be tracked to “who did what” within seconds (potentially the best form of security available), and information is never deleted.

The disruptive technologies of BIM and cloud computing will accelerate the adoption of emergent construction delivery methods and foster new frameworks. Design-bid-build, the traditional construction delivery method for decades, is inherently flawed. As a lowest bid deployment it immediately sets up adversarial relationships for involved parties. Owners prepare a solicitation for construction projects based on their understanding of them1, with or without third-party A/E assistance, and in most cases they go out in search of the lowest bidder. Then without a thorough understanding of the owner’s facility, bidders base their responses on the owner’s solicitation, plans, and specifications. Owners typically allow a period of time for bidders’ questions and clarifications; but the quality of this interchange is at best questionable if based solely on a written scope, plans and specifications, and/or a meeting with suppliers.

Design-build, arguably a step in right direction, falls short of bringing all stakeholders together. More responsibility of design and construction is shifted to the contractor and/or A/E. However, the dual level participation structure doesn’t assure the interests of all parties are equally addressed. Furthermore, the design-build process is typically reserved for major new construction projects versus the numerous sustainability, repair, renovation projects, and minor new construction projects typically encountered by facility managers (fms).

Because BIM brings together previously disparate information into a framework that enables decision support, using the technology requires a collaborative construction delivery method. The integration of the domain knowledge and robust processes required to allow fms, A/Es, and other stakeholders to achieve heightened levels of information sharing and collaboration is enabled by methods that include Integrated Project Delivery (IPD) and Job Order Contracting (JOC).

Key characteristics of these emergent construction delivery methods include: choices based on best value; some form of pricing transparency; early and ongoing information sharing among project stakeholders; appropriate distribution of risk; and some form of financial incentive to drive performance.

Both IPD and JOC allow, if not require, owner cost estimators and project managers to “partner” with contractors, subcontractors, and A/Es to conceptualize, create, cost, prioritize, start, and report upon projects—in the very early phases of construction.

IPD, JOC, and Simplified Acquisition of Base Civil Engineering Requirements (SABER)—the U.S. Air Force term for applying JOC practices—are practiced simultaneously by a growing number of organizations and supported by digital technologies. These construction delivery processes are embedded within software to allow for rapid, cost-effective, and consistent deployment as well as the associated level of collaboration and transparency.

BIM and cloud computing are disruptive technologies that will accelerate the adoption of emergent construction delivery methods such as IPD and JOC. Construction delivery methods set the tone and level of interaction among project participants and can be viewed as the management process framework. When supported by BIM and cloud computing, the life cycle management of the built environment, and the associated management of big data, can be expected to become commonplace for many construction projects.

1303 profdev a 150x150 Professional Development: Construction Disruption

Cholakis

Cholakis is chief marketing officer for 4Clicks Solutions, LLC, a Colorado Springs, CO provider of cost estimating and project management software. With expertise in facilities life cycle costs and total cost of ownership in various market segments, he is involved in numerous industry associations and committees including the American Society of Safety Engineers, Association for the Advancement of Cost Engineering, Society of American Military Engineers, BIM Library Committee-National Institute for Building Sciences (NIBS), and National Building Information Model Standard Project Committee.

1 “The Art of Thinking Outside the Box;” Vince Duobinis; 2008.

Building Information Management Framework – BIMF – People, Process, Technology

While at first perhaps a bit intimidating…  illustrating the life-cycle management within a BIM context is relatively straightforward.

BIM – Life-cycle Management Perspective

BIMF - Building Information Management Framework

 

The purpose of this Framework is to provide  a general guide that your team can quickly customize to your specific requirements.   Like a restaurant menu or a travel guide, you can visualize the resources available and decide on an appropriate strategic configuration of options.

Just begin in the Center and work thru this Action Agenda using, when available and appropriate, tested  processes and templates.   Using these guidelines, set up a BIM Management structure with your stakeholders.

 The Building Information Management Framework (BIMF) illustrates a how people, processes, and technology interact to support the built environment throughout its life-cycle.  Based upon the associated level of detail, an operating model can be developed to more efficiently identify,  prioritize, and meet the current and future needs of built environment stakeholders (Owners, AE’s, Contractors, Occupants, Oversight Groups…)

More specifically, modular, Model View Definitions (MVD), associated exchange specifications and common data architectures [for example: Industry Foundation Class (IFC), OMNICLASS] can  help to integrate multi-discipline Architecture, Engineering, Construction (AEC) “activities”,  “business processes”, “associated competencies” and “supporting technologies”  to meet overall requirements with a goal of continuous improvement.

WORK GROUP FORMATION – Roles and Relationships;

PROCESS MAP – who does what, in which sequence, and why;

EXCHANGE REQUIREMENTS & BASIC BUSINESS RULES – Overall guidelines for information integration

EXCHANGE REQUIREMENT MODELS – Specific information “maps”

GENERIC MODEL VIEW DEFINTION (MVD) – Strategic approach incorporating guidelines for information format, content, and use;

MODEL VIEW DEFINTION & IMPLEMENTATION SPECIFICATIONS   – Specific format, content, and use

PROJECT AGREEMENT REQUIREMENTS – LEVEL OF DEVELOPMENT (LOD) – Defined “project” deliverables

(Adapted from: IMPROVING THE ROBUSTNESS OF MODEL EXCHANGES USING PRODUCT MODELING ‘CONCEPTS’ FOR IFC SCHEMA –Manu Venugopal, Charles Eastman, Rafael Sacks, and Jochen Teizer – with ongoing assistance/input from NBIMS3.0 Terminology Subcommittee)

Model View Definitions (MVD) and associated exchange specifications, provide the best benefit if they are modular and reusable and developed from Industry Foundation Class (IFC) Product Modeling Concepts.   Model views and overall life-cycle management are similar in this regard.

Building Information Modeling (BIM) tools serving the Architecture, Engineering, Construction (AEC) span multiple  “activities”,  “business processes”, “associated competencies” and “supporting technologies”, and each may required different internal data model representation to suit each domain.  Data exchange is therefore a critical aspect.   Inter and intra domain standardized data architectures and associated adoption of matching robust processes are really the first step toward successfully managing the built environment.

The Process Side of BIM = Collaboration: People, Process, & Technology

TFM Article – BIM, Cloud Computing, IPD and JOC

Construction Disruption           Peter Cholakis

As they pass the emergent stage, BIM and cloud computing will continue to impact project delivery.
Emergent disruptive technologies and construction delivery methods are altering both the culture and day-to-day practices of the construction, renovation, repair, and sustainability of the built environment.
Meanwhile, a shifting economic and environmental landscape dictates significantly improved efficiencies relative to these facility related activities.  This is especially important to any organization dependent upon its facilities and infrastructure to support and maintain its core mission.
The disruptive digital technologies of building information modeling (BIM) and cloud computing, combined with emergent collaborative construction delivery methods are poised to alter the status quo, ushering in increased levels of collaboration and transparency.  A disruptive technology is one that alters the very fabric of a business process or way of life, displacing whatever previously stood in its place.  BIM and cloud computing fit the profile of disruptive technologies, individually, and when combined these stand to create a tidal wave of change.
BIM is the life cycle management of the built environment, supported by digital technology.  While a great deal of emphasis has been placed upon 3D visualization, this is just a component of BIM.  The shift from a “first cost mentality” to a life cycle cost or total cost of ownership is a huge change for many.Improving decision making practices and applying standardized terms, metrics, and cost data can also prove challenging.An understanding and integration of the associated knowledge domains important to life cycle management is required, resulting in what is now being referred to as “big data.”
Cloud computing is also a disruptive technology, and it’s one that impacts several areas.  The National Institute of Standards and Technology (NIST) definition of cloud computing is as follows, “Cloud computing is a model for enabling ubiquitous, convenient, on demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.  The cloud model is composed of five essential characteristics, three service models, and four deployment models.”
It is perhaps helpful to define cloud computing in terms of its benefits.  Cloud computing enables far greater levels of collaboration, transparency, and information access previously unavailable by traditional client/server, database, or even prior generation web applications.  Multiple users can work on the same data set with anyone, anywhere, anytime, in multicurrency, multilanguage environments.  All changes can be tracked to “who did what” within seconds (potentially the best form of security available), and information is never deleted.
The disruptive technologies of BIM and cloud computing will accelerate the adoption of emergent construction delivery methods and foster new frameworks.  Design-bid-build, the traditional construction delivery method for decades, is inherently flawed.  As a lowest bid deployment it immediately sets up adversarial relationships for involved parties.  Owners prepare a solicitation for construction projects based on their understanding of them1, with or without third-party A/E assistance, and in most cases they go out in search of the lowest bidder.  Then without a thorough understanding of the owner’s facility, bidders base their responses on the owner’s solicitation, plans, and specifications.  Owners typically allow a period of time for bidders’ questions and clarifications; but the quality of this interchange is at best questionable if based solely on a written scope, plans and specifications, and/or a meeting with suppliers.
Design-build, arguably a step in right direction, falls short of bringing all stakeholders together.  More responsibility of design and construction is shifted to the contractor and/or A/E.  However, the dual level participation structure doesn’t assure the interests of all parties are equally addressed.  Furthermore, the design-build process is typically reserved for major new construction projects versus the numerous sustainability, repair, renovation projects, and minor new construction projects typically encountered by facility managers (FMers).
Because BIM brings together previously disparate information into a framework that enables decision support, using the technology requires a collaborative construction delivery method.  The integration of the domain knowledge and robust processes required to allow fms, A/Es, and other stakeholders to achieve heightened levels of information sharing and collaboration is enabled by methods that include Integrated Project Delivery (IPD) and Job Order Contracting (JOC).
Key characteristics of these emergent construction delivery methods include: choices based on best value; some form of pricing transparency; early and ongoing information sharing among project stakeholders; appropriate distribution of risk; and some form of financial incentive to drive performance.
Both IPD and JOC allow, if not require, owner cost estimators and project managers to “partner” with contractors, subcontractors, and A/Es to conceptualize, create, cost, prioritize, start, and report upon projects—in the very early phases of construction.
IPD, JOC, and Simplified Acquisition of Base Civil Engineering Requirements (SABER)—the U.S. Air Force term for applying JOC practices—are practiced simultaneously by a growing number of organizations and supported by digital technologies.  These construction delivery processes are embedded within software to allow for rapid, costeffective, and consistent deployment as well as the associated level of collaboration and transparency.
BIM and cloud computing are disruptive technologies that will accelerate the adoption of emergent construction delivery methods such as IPD and JOC.Construction delivery methods set the tone and level of interaction among project participants and can be viewed as the management process framework.When supported by BIM and cloud computing, the life cycle management of the built environment, and the associated management of big data, can be expected to become commonplace for many construction projects.

Cholakis is chief marketing officer for 4Clicks Solutions, LLC (www.4clicks.com), a Colorado Springs, CO provider of cost estimating and project management software.  With expertise in facilities life cycle costs and total cost of ownership in various market segments, he is involved in numerous industry associa- tions and committees including the American Society of Safety Engineers, Association for the Advancement of Cost Engineering, Society of American Military Engi- neers, BIM Library Committee-National Institute for Building Sciences (NIBS), and National Building Information Model Standard Project Committee.

 

 

http://epubs.democratprinting.com/article/Professional_Development%3A_Construction_Disruption/1338940/149812/article.html